Microprocessor 1-41 Introduction to Microprocessor Based Computer System
Micro- Address bus >
processor ,l | l [] l
Data bus >

MEMw | <> .

MEMR —s | Control
IOW bus
=)} g

Read Read /
only xzt:wry Keyboard Printer
memo

mory RAM

Fig. 1.28 Bus structure of microprocessor based computer system

Microprocessor Data bus Address bus | Memory size
width width
8086 16 20 M
8088 8 20 ™
80186 16 20 ™
80188 8 20 ™
80286 16 24 16M
80386SX 16 24 16M
80386DX 32 32 4GB
80486 32 32 4G
Pentium 64 32 4G
Pentium Pro 64 36 €4K
Pentium overdrive 32 32 4G
Pentium I 64 32 64G
Pentium i, 11, IV 64 36 64G
Table 1.8

The data bus lines are bi-directional. This means that microprocessor can read data in
on these lines from memory or from a port, as well as send data out on these lines to a
memory location or to a port. The data bus is connected in parallel to all peripherals. The

Microprocessor 1-42 Introduction to Microprocessor Based Computer System

communication between peripheral and microprocessor is activated by giving output
enable pulse to the peripheral. Outputs of peripherals are floated or tri-stated when they
are not in use.

2) Address bus : It is an unidirectional bus. The address bus consists of 16, 20, 24 or
more parallel signal lines. On these lines the microprocessor sends the address of the
memory location or I/O port that is to be written to or read from.

3) Control bus : The control lines regulate the activity on the bus. The microprocessor
sends signals on the control bus to enable the outputs of addressed memory devices or
port devices. Typical control bus signals are memory read (MEMR), memory write
(MEMW), 1/O read (IOR) and 1/O write (IOW).

The signals on all these buses must be co-ordinated with the signals created by various
components connected to the bus. The co-ordination between these signals is monitored by
bus control unit.

1.3.4 Operating System

An operating system performs resource management and provides an interface
between the user and the machine. A resource may be the microprocessor, memory, or an
I/O device. Basically, an operating system is a collection of system programs that tells the
machine what to do under a variety of conditions. Major operating system functions
include efficient sharing of memory, 1/O peripherals, and the microprocessor among
several users. Along with DOS, UNIX and WINDOWS are the popular operating systems
used today.

Review Questions

Discuss the mechanical age as a historical background of a computer system.
Draw and explain the structure of Babbage’s analytical engine.

Discuss the electrical age as a historical background of a computer system.
Discuss the programming advancements in a computer system.

Discuss the microprocessor age as a historical background of a computer system.
Give the comparison between pentium processors.

Draw and explain the block diagram of simple microprocessor based system.
Write a short note on terminologies used in microprocessor.

What do you mean by word length ?

Explain different phases in the execution processes.

© % N S R LN

e
- O

. Explain fetching, decoding and execution operations of microprocessor.

oy
N

How many address lines are required to access 2 MB of memory ?
What is stack ? What do you mean by stack pointer ?
What is the function of ‘Timing and control unit’ in microprocessor ?

ke
Ll

-
>

Which are the different types of buses used in microprocessor ?

Microprocessor 1-43 Introduction to Microprocessor Based Computer System

16.
17.
18.

19.
20.

21.

22.
23.

24.

Write a short note on microprocessor based personal computer system.

Draw the map of memory system of microprocessor based personal computer system.

Give the logical grouping of system memory. What is conventional memory ? Where it is located 7
What is its purpose ?

Draw and explain the first 1 Mbyte memory work space.

What is extended memory ? Draw and explain the memory map for conventional and extended
memory.

What is expanded memory ? Draw and explain the memory map for conventional, extended and
expanded memories.

How expanded memory is accessed ?

Write short notes on :

a) Extended memory

b) Conventional memory

¢) Upper memory area

d) High memory area

e) Expanded memory

What is an operating system?

aaa

(1-44)

In

8086 / 8088 CPU

1978, Intel came out with the 8086 processor. The Intel 8086 is a 16-bit

microprocessor, implemented in N-channel, depletion load, silicon gate technology
(HMOS), and packaged it in a 40 pin dual in line package. In this chapter, we study
features, architecture, register organization, bus operation and memory segmentation.

2.1 Features of 8086

1.

The 8086 is a 16-bit microprocessor. The term “16-bit” means that its arithmetic
logic unit, internal registers and most of its instructions are designed to work with
16-bit binary words.

The 8086 has a 16-bit data bus, so it can read data from or write data to memory
and ports either 16 bits or 8 bits at a time. The 8088, however, has an 8-bit data
bus, so it can only read data from or write data to memory and ports 8 bits at a
time.

The 8086 has a 20-bit address bus, so it can directly access 2% or 10,48,576 (1 Mb)
memory locations. Each of the 10, 48, 576 memory locations is byte wide.
Therefore, a sixteen-bit words are stored in two consecutive memory locations. The
8088 also has a 20-bit address bus, so it can also address 220 or 10, 48, 576 memory
locations.

The 8086 can generate 16-bit I/O address, hence it can access 2'® = 65536 1/0
ports.

The 8086 provides fourteen 16-bit registers.

. The 8086 has multiplexed address and data bus which reduces the number of pins

needed, but does slow down the transfer of data (drawback).

- The 8086 requires one phase clock with a 33 % duty cycle to provide optimized

internal timing.
2173 Range of clock rates

are - 5 MHz for 8086

10 MHz for 8086-1

T8 . ,
ﬁ\ Tore /__ 8 MHz for 8086-2
|- T »|

Fig. 2.1 Clock cycle
(2-1)

Microprocessor 2-2 8086 / 8088 CPU

8.

10.

11.

12.

The 8086 is possible to perform bit, byte, word and block operations in 8086. It
performs the arithmetic and logical operations on bit, byte, word and decimal
numbers including multiply and divide.

The Intel 8086 is designed to operate in two modes, namely the minimum mode
and the maximum mode. When only one 8086 CPU is to be used in a
microcomputer system, the 8086 is used in the minimum mode of operation. In
this mode the CPU issues the control signals required by memory and 1/O devices.
In multiprocessor (more than one processor in the system) system 8086 operates in
maximum mode. In maximum mode, control signals are generated with the help of
external bus controller (8288).

The Intel 8086 supports multiprogramming. Inmultiprogramming, the code for
two or more processes is in memory at the same time and is executed in a
time-multiplexed fashion. “

An interesting feature of the 8086 is that it fetches upto six instruction bytes
(4 instruction bytes for 8088) from memory and queue stores them in order to
speed up instruction execution. Later we will discuss this in detail.

The 8086 provides powerful instruction set with the following addressing modes :
Register, immediate, direct, indirect through an index or base, indirect through the
sum of a base and an index register, relative and implied.

2.2 Architecture of 8086

Fig. 2.2 shows a block diagram of the 8086 internal architecture. It is internally divided
into two separate functional units. These are the Bus Interface Unit (BIU) and the
Execution Unit (EU). These two functional units can work simultaneously to increase
system speed and hence the throughput. Throughput is a measure of number of
instructions executed per unit time.

2.2.1 Bus Interface Unit [BIU]

The bus interface unit is the 8086’s interface to the outside world. It provides a full
16-bit bi-directional data bus and 20-bit address bus. The bus interface unit is responsible
for performing all external bus operations, as listed below.

Functions of Bus Interface Unit

1. It sends address of the memory or 1/0.

2. It fetches instruction from memory.

3. It reads data from port/memory.

4. It writes data into port/memory.

5. It supports instruction queuing.
6. It provides the address relocation facility.

Microprocessor 2-3 8086 /8088 CPU

6

5 Instruction
4 Stream
3

2

1

Byte
Queue

1
!

: Controi
________________ system

1
1
1
I
i
!
1
]
]
]
|) .
Arithmetic
I
) CX CH CL Logic Unit
: DX DH DL
' SP !
i
: BP ¥ ﬁ'>
| Sl Operands
! DIl Flags Al
1

e T e e e e e e e e i — — — ————— - ——_—— e

Fig. 2.2 8086 internal block diagram

To implement these functions the BIU contains the instruction queue, segment registers
instruction pointer, address summer and bus control logic.

Instruction Queue

To speed up program execution, the BIU fetches six instruction bytes ahead of time
from the memory. These prefetched instruction bytes are held for the execution unit in a
group of registers called Queue. With the help of queue it is possible to fetch next
instruction when current instruction is in execution. For example, current instruction in
execution is a multiplication instruction. In 8086, operands for multiplication operations are
within registers. Still it requires 100 clock cycles to execute multiply instruction. Like
multiplication there are number of other instructions in 8086 which need quite a large
number of clock cycles for execution. During this execution time the BIU fetches the next
instruction or instructions from memory into the instruction queue instead of remaining
idle. The BIU continues this process as long as the queue is not full. Due to this, execution
unit gets the ready instruction in the queue and instruction fetch time is eliminated. 1, . is
illustrated in Fig. 2.3.

The queue operates on the principle first in first out (FIFO). So that the execution unit
gets the instructions for execution in the order they are fetched. In case of JUMP and
CALL instructions, instruction already fetched in queue are of no use. Hence, in these

Microprocessor 2-4 8086 / 8088 CPU

Time required for execution of two instructions without pipelining
1]

. Time__;
)
y saved 1
Sequential
phases F1 l D, | Eq I F2] D, E; I
)
1
—_
BIU Fi | Fa | F = !
1
Overlapping '|
phases 1
EU {oo] B [p| & AR
Time required for execution of two
instructions because of pipelining _—.‘

Fig. 2.3 Pipelining
cases queue is dumped and newly formed by loading instructions from new address
specified by JUMP or CALL instruction. Feature of fetching the next instruction while the
current instruction is executing is called pipelining.

The length of the queue should be such that EU should get the next instruction from
the queue of the BIU immediately after the execution of the current instruction. To satisfy
this, number of pre-fetched instruction in the queue and hence the queue length depends
on the fetching speed and the execution speed. Sometime queue length may be restricted
due to the space available on the CPU chip.

2.2.2 Execution Unit [EU]

The execution unit of 8086 tells the BIU from where to fetch instructions or data,
decodes instructions and executes instructions. It contains

e Control circuitry

¢ Instruction decoder
e Arithmetic logic unit (ALU)
o Register organisation
¢ Flag register
¢ General purpose registers
e Pointers and index registers
Control circuitry, Instruction decoder, ALU
The control circuitry in the EU directs the internal operations. A decoder in the EU
translates the instructions fetched from memory into a series of actions which the EU

performs. ALU is 16-bit. It can add, subtract, AND, OR, XOR, increment, decrements,
complement and shift binary numbers.

Microprocessor 2-5 8086 / 8088 CPU

2.3 Register Organization

The 8086 has a powerful set of registers. It includes general purpose registers, segment
registers, pointers and index registers, and flag register. The Fig. 2.4 shows the register
organization of 8086. It is also known as programmer’s model of 8086. The registers shown
in programmer’s model are accessible to programmer. As shown in the Fig. 24, all the
registers of 8086 are 16-bit registers.

SP
15 87 0
AX | AH | AL CSs BP
BX | BH | BL DS Si
CX | CH| CL ES DI
DX | DH | DL SS F P
(a) General purpose registers (b) Segment registers (c) Flag registers (d) Pointer and

index registers

Fig. 2.4 Register organization of 8086

2.3.1 General Purpose Registers

The 8086 has four 16-bit general purpose registers labeled AX, BX, CX and DX. Each
16-bit general purpose register can be split into two 8-bit registers. The letters L and H
specify the lower and higher bytes of a particular register. For example, BH means the
higher byte (8-bits) of the BX register and BL means the lower byte (8-bits) of the BX
register. The letter X is used to specify the complete 16-bit register.

The general purpose registers are either used for holding data, variables and
intermediate results temporarily. They can also be.used as a counters or used for storing
offset address for some particular addressing modes. The register AX is used as 16-bit
accumulator whereas register AL (lowerbyte of AX) is used as 8-bit accumulator. The
register BX is also used as offset storage for generating physical addresses in case of
certain addressing modes. On the other hand, the register CX is also used as a default
counter in case of string and loop instructions.

2.3.2 Segment Registers

The physical address of the 8086 is 20-bits wide to access 1 Mbyte memory locations.
However, its registers and memory locations which contain logical addresses are just
16-bits wide. Hence 8086 uses memory segmentation. It treats the 1 Mbyte of memory as
divided into segments, with a maximum size of a segment as 64 kbytes. Thus any location
within the segment can be accessed using 16-bits. The 8086 allows only four active

Microprocessor 2-6 8086 / 8088 CPU

segments at a time, as shown in the Fig. 2.5. For the selection of the four active segments
the 16-bit segment registers are provided by the bus interface unit (BIU) of the 8086. These
four registers are :

Address
FFFFFH

Extra segment } 64 K
E

d

Stack segment } 64 K
S

1 Mbyte
physical
memory

Data segment } 64 K

S

Code segment }64 K

S

00000H

Fig. 2.5 Memory segmentation and segment registers

‘

Code segment (CS) register, the data segment (DS) register, the stack segment (S5)
register, and the extra segment (ES) register. These are used to hold the upper 16-bits of
the starting addresses of the four memory segments, on which 8086 works at a particular
time. For example, the value in CS identifies the starting address of 64 kbyte segment
known as code segment. By “starting address”, we mean the lowest addressed byte in the
active code segment. The starting address is also known as base address or segment base.

The BIU always inserts zeros for the lower 4 bits (nibble) in the contents of segment
register to generate 20-bit base address. For example, if the code segment register contains
348AH, then code segment will start at address 348 A0H.

Functions of Segment Registers

1. The CS register holds the upper 16-biis of the starting address of the segment from
which the BIU is currently fetching the instruction code byte.

2. The SS register is used for the upper 16-bits of the starting address for the
program stack (all stack related instructions will operate on stack).

Microprocessor 2-7 8086 / 8088 CPU

3. ES register and DS register are used to hold the upper 16-bits of the starting
address of the two memory segments which are used for data.

2.3.3 Pointers and Index Registers

All segment registers are 16-bit wide. But it is necessary to generate 20-bit address
(physical address) on the address bus. To get 20-bit physical address one or more pointer
or index registers are associated with each segment register. The pointer registers IP, BP
and SP are associated with code, data and stack segments, respectively. They hold the
offset within the code, data and stack segments, respectively. The index registers DI and SI
are used as a general purpose registers as well as for offset storage in case of indexed,
based indexed and relative based indexed addressing modes. The detail description of
pointers and index register is given in section 2.5. '

2.3.4 Flag Register
A flag is a flip-flop which indicates some condition produced by the execution of an

instruction or controls certain operations of the EU. The flag register contains nine active

flags as shown in the Fig. 2.6.

8085 Compatible flags

BIT 15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 0

ujulu UOFDFIFTFSFZFUAFIU PF|lU [CF

o~ ‘ t
U = Undefined 1 Carry flag : Set by carry out of MSB
Parity flag : Set if result has even parity

Auxiliary carry flag for BCD
Zero flag : Set if resuit = 0
Sign flag = MSB of result
Single step trap
Interrupt enable
String direction
Overflow

Fig. 2.6 8086 flag register bit pattern
Six of them are used to indicate some condition produced by instruction.

1. Carry Flag (CF) : In case of addition this flag is set if there is a carry out of the MSB.
The carry flag also serves as a borrow flag for subtraction. In case
of subtraction it is set when borrow is needed.

2. Parity Flag (PF) : It is set to 1 if result of byte operation or lower byte of the word
operation contain an even number of ones; otherwise it is zero.

3. Auxiliary Flag (AF):This flag is set if there is an overflow out of bit 3 i.e., carry from
lower nibble to higher nibble (D; bit to D, bit). This flag is used
for BCD operations and it is not available for the programmer.

Microprocessor 2-8 8086 / 8088 CPU

4. Zero Flag (ZF) : The zero flag sets if the result of operation in ALU is zero and
flag resets if the result is nonzero. The zero flag is also set if a
certain register content becomes zero following an increment or
decrement operation of that register.

5. Sign Flag (SF): After the execution of arithmetic or logical operations, if the MSB
of the result is 1, the sign bit is set. Sign bit 1 indicates the result is
negative; otherwise it is positive.

6. Overflow Flag (OF):This flag is set if result is out of range. For addition this flag is set
when there is a carry into the MSB and no carry out of the MSB or
vice-versa. For subtraction, it is set when the MSB needs a borrow
and there is no borrow from the MSB, or vice-versa.

mmp Example 2.1 : Give the contents of the flag register after execution of following addition.
0110 0101 1101 0001
+0010 0011 0101 1001
1000 1001 0010 1010
Solution :SF=1,ZF=0,PF=1,CF=0,AF =0, OF = 1

mmp Example 2.2 : Give the contents of the flag register after execution of following
subtraction.

0110 0111 0010 1001
- 0011 0101 0100 1010
0011 0001 1101 1111
Solution :SF =0, ZF=0,PF=1,CF=0,AF =1, OF =0

The three remaining flags are used to control certain operations of the processor.

1. Trap Flag (TF): One way to debug a program is to run the program one
instruction at a time and see the contents of used registers and
memory variables after execution of every instruction. This
process is called ‘single stepping’ through a program. Trap flag is
used for single stepping through a program. If set, a trap is
executed after execution of each instruction, ie. interrupt service
routine is executed which displays various registers and memory
variable contents on the display after execution of each
instruction. Thus programmer can easily trace and correct errors
in the program.

Microprocessor 2-9 8086 /8088 CPU

2. Interrupt Flag (IF) : It is used to allow/prohibit the interruption of a program. If set, a
certain type of interrupt (a maskable interrupt) can be recognized
by the 8086; otherwise, these interrupts are ignored.

3. Direction Flag (DF) : It is used with string instructions. If DF = 0, the string is
processed from its beginning with the first element having the
lowest address. Otherwise, the string is processed from the high
address towards the low address.

2.4 Bus Operation

The 8086 has a common address and data bus. The address and data are time
multiplexed, i.e. address and data appear on this bus at different time intervals, Thus bus
is commonly known as multiplexed address and data bus. The multiplexed address and
data bus provides the most efficient use of pins on the processor while permitting the use
of a standard 40-lead package. This multiplexed address and data bus has to be
demultiplexed externally with the use of latches and the ALE signal provided by 8086.
This bus can be buffered directly and used throughout the system with address latching
provided on memory and I/O modules or it can be demultiplexed at the processor with a
single set of address latches if a standard non-multiplexed bus is desired for the system.

The control operation of 8086 is different in two different modes : minimum mode and
maximum mode. The 8086 provides some signals which have different meanings in
minium mode and maximum mode. The minimum mode is used for a small systems with
a single processor and maximum mode is for medium size to large systems, which often
include two or more processors.

2.5 Memory Segmentation

Two types of memory organisations are commonly used. These are linear addressing
and segmented addressing. In linear addressing the entire memory space is available to
the processor in one linear array. In the segmented addressing, on the other hand, the
available memory space is divided into “chunks” called segments. Such a memory is
known as segmented memory. In 8086 system the available memory space is 1 Mbytes.
This memory is divided into number of logical segments. Each segment is 64 kbytes in size
and addressed by one of the segment registers. The 16-bit contents of the segment register
gives the starting/base address of a particular segment, as shown in Fig. 2.7. To address a
specific memory location within a segment we need an offset address. The offset address is
also 16-bit wide and it is provided by one of the associated pointer or index register.

Microprocessor 2-10 8086 / 8088 CPU

Physical Address
FFFFFH — <— Highest address
i) 15

7FFFFH Top of extra segment

—

64 K
70000H -L Extra segment base ES = 7000H
5FFFFH T Top of stack segment

64 K
50000H -—L Stack segment base SS = 5000H
4489FH T Top of code segment

64 K
348A0H —l— Code segment base CS = 348AH
2FFFFH T Top of data segment

64 K
20000H —l— Bottom of data segment
00000H 1]

Physical memory
Fig. 2.7 Memory segmentation
Rules for Memory Segmentation

1. The four segments can overlap for small programs. In a minimum system all four
segments can start at the address 00000H.

2. The segment can begin/start at any memory address which is divisible by 16.

Advantages of Memory Segmentation
1. Tt allows the memory addressing capacity to be 1 Mbyte even though the address
associated with individual instruction is only 16-bit.

2. 1t allows instruction code, data, stack, and portion of program to be more than
64 kB long by using more than one code, data, stack segment, and extra segment.

3. It facilitates use of separate memory areas for program, data and stack.

4. It permits a program or its data to be put in different areas of memory, each time
the program is executed ie. program can be relocated which is very useful in
multiprogra aming.

Microprocessor 2-11 8086 / 8088 CPU

Generation of 20-bit Address

To access a specific memory location from any segment we need 20-bit physical
address. The 8086 generates this address using the contents of segment register and the
offset register associated with it. Let us see how 8086 access code byte within the code
segment.

We know that the CS register holds the base address of the code segment. The 8086
provides an instruction pointer (IP) which holds the 16-bit address of the next code byte
within the code segment. The value contained in the IP is referred to as an offset. This
value must be offset from (added to) the segment base address in CS to produce the
required 20-bit physical address.

The contents of the CS register are multiplied by 16. i.e. shifted by 4 position to the
left by inserting 4 zero bits and then the offset i.e. the contents of IP register are added to
the shifted contents of CS to generate physical address. As shown in the Fig. 2.8, the
contents of CS register are 348AH, therefore the shifted contents of CS register are
348A0H. When the BIU adds the offset of 4214H in the IP to this starting address, we get
38AB4H as a 20-bit physical address of memory. This is illustrated in Fig. 2.8 (b).

Physical Addresses

-— Top of code segment cs |3 218TA] 0 ~— Implied zero
4489FH (nibble)
P 4121114 4 zero bits

Physical address {3 [8 [A[B]4

IP =4214H

I <+— Code byte 38AB4H
CS = 348AH

-«— Start of Code segment
348A0H

(a) (b)

Fig. 2.8

We have seen that how 20-bit physical address is generated within the code segment.
In the similar way the 20-bit physical address is generated in the other segments.
However, it is important to note that each segment requires particular segment register
and offset register to generate 20-bit physical address.

Pointers and Index Registers

All segment registers are 16-bit. But it is necessary to put 20-bit address (physical
address) on the address bus. To get 20-bit physical address one more register is associated
with each segment register the way IP is associated with CS.

These additional registers belong to the pointer and index group. The pointer and
index group consists of instruction pointer (IP), stack pointer (SP), BP (base pointer),
source index (SI) and destination index (DI) registers.

Microprocessor 2-12 8086 / 8088 CPU

Stack Pointer (SP) : The stack pointer (SP) register contains the 16-bit offset from the
start of the segment to the top of stack. For stack operation, physical address is produced
by adding the contents of stack pointer register to the segment base address in SS. To do
this the contents of the stack segment register are shifted four bits left and the contents of
SP are added to the shifted result. If the contents of SP are 9F20H and SS are 4000H then
the physical address is calculated as follows.

SS = 4000H after shifting four bits left SS = 40000H

Now
SS 40000H
. + SP 9F20H
Physical address 49F20H

<— End of stack segment 4FFFFH

— «— Top of stack 49F20H

SP =9F20H

SS = 4000H — «— Start of stack segment 40000H
T~

Fig. 2.9 Stack and stack pointer

Base Pointer, Source Index and Destination Index (BP, Sl and DI)

These three 16-bit registers can be used as general purpose registers. However, their
main use is to hold the 16-bit offset of the data word in one of the segments.

Base Pointer (BP) : We can use the BP register instead of SP for accessing the stack
using the based addressing mode. In this case, the 20-bit physical stack address is
calculated from BP and SS. Addressing modes are discussed in later section.

Source Index (SI) : Source index (SI) can be used to hold the offset of a data word in
the data segment. In this case, the 20-bit physical data address is calculated from SI and
DS.

Destination Index (D) : The ES register points to the extra segment in which data is
stored. String instructions always use ES and DI to determined the 20-bit physical address
for the destination.

Default and Alternate Register Assignments

Table 2.1 shows that some memory references and their default and alternate segment
definitions. For example, instruction codes can only be stored in the code segment with IP
used as an offset. Similarly, for stack operations only SS and SP or BP registers can be
used to give segment and offset addresses respectively. On the other hand, for accessing
general data, string source, data pointed by BX and BP registers; it is possible to use
alternate segments by using segment override prefix. See examples given after Table 2.1.

Microprocessor 2-13 8086 / 8088 CPU
Type of Memory Default Segment Alternate Segment Offset (Logical
Reference Address)

Instruction fetch CSs None P

Stack operation SS None SP, BP
General data DS CS, ES, SS Effective address
String source DS CS, ES, SS Si

String destination ES None DI

BX used as pointer Ds CS, ES, S8 Effective address
BP used as pointer SS CS, ES, DS Effective address

Table 2.1 Default and alternate register assignments
For the following examples we have assumed

CS = 1000H, DS = 2000H, SS = 3000H, ES = 4000H, BP = 0010 H,
BX = 0020H, SP = 0030H, SI = 0040H, DI = 0050H

Example :

1) MOV AL, [BP]

3000[0]H

* 0010 H

Physical Address 3001 0 H

2) MOV CX, [BX]

2000][0]H

* 0020H

Physical Address 2002 0 H

3) MOV AL, [BP+S]]

001 0 H

* 004 0H

Effective Address 005 0 H

3000[0] H
005 0 H

+

Physical Address 3005 0 H

SS
BP

DS

BP
Si

SS

This instruction copies a byte from memory
location to the AL register. The effective address for
the memory location is contained in the BP register.
By default, an effective address is added to the stack
segment (SS) to produce the physical memory address
(30010 H).

This instruction copies a word from memory
location to the CX register. The effective address is
contained in the BX register. By default an effective
address is added to the data segment (DS) to
produce the physical memory address (20020 H).

This instruction copies a byte from memory location
to the AL register. The effective address is the
summation of the contents of the BP and SI register.

The effective address is added to the stack
segment (SS) to get the physical address.

Microprocessor 2-14 8086 / 8088 CPU

4) MOV CS : [BX], AL

This instruction copies a byte from the AL register
to a memory location. The effective address for the
memory location is contained in the BX register. By
default an effective address in BX will be added to the
data segment (DS) to produce the physical memory
address. In this instruction, the CS: in front of [BX]
indicates that we want BIU to add the effective address to the code segment (CS) to
produce the physical address. The CS: is called segment override prefix.

1000[0}JH cCS
002 0 H BX

Physical Address 1002 0 H

+

Segment Override Prefix

The segment override prefix allows the programmer to deviate from the default
segment. The segment override prefix is an additional 8-bit code which is put in memory
before the code for the rest of the instruction. This additional code selects the alternate
segment register. The code byte for the segment override prefix as the format 001XX110.
The XX represents a 2 bits which are as follows : ES = 00, CS= 01, SS = 10 and DS = 11. It
is important to note that the segment override prefix may be added to almost any
instruction in any memory addressing mode.

2.6 The Processor 8088

In 1978, Intel came out with the 8086 processor. Since it is a 16-bit processor and has a
tremendous flexibility in the programming as compared to 8085, it was a remarkable step
in the development of high speed computing machines. Before the introduction of 8086,
most of the microprocessor based systems was built up with microprocessors 8080 or 8085.
Therefore, the interfacing circuits for different applications was designed for these 8-bit
microprocessors. So naturally, after introduction of 8086, there was a demand for a
microprocessor chip which has the software compatibility with 8086 and external interface
like 8085. This was the main purpose behind the design of 8088 microprocessor.

The 8088 is a 8-bit microprocessor that is fully software compatible with the 8086 (i.e.
it has the same instruction set) and can be used in a hardware system that was built for
an 8080 or 8085. Like the 8080 and 8085 it has 8 data lines, but its CPU architecture is
essentially the same as that of the 8086 except few minor changes. The 8086 has 6 byte
" instruction queue whereas 8088 has 4 byte instruction queue, as shown in Fig. 2.10. The
pin assignments for 8088 are the same as the 8086 except that the 8088 address pins Aqs
through Ag are used only for addresses and one of the control pins, the high-byte enable
(BHE)pin, has been changed to a status pin because the 8088 can access only one byte at a
time. The M/IO signal of 8086 is made IO/M in 8088 to maintain the hardware
compatibility with 8085.

Microprocessor

8086 / 8088 CPU

e, e, — e, ——,—————

- - - - - —

Instruction
stream
byte
queue
_____________________________ Jd
1
1
1
Control 1
System :
;
1
)
1
1
1
1
1
1
Arithmetic '
cX CH CcL logic unit 1
DX DH DL :
SP ! N !
1
BP ¥ md |
Si Operands :
DI Flags -\J, :
1

Fig. 2.10 8088 Internal block diagram

Sr. No Microprocessor 8088 Microprocessor 8086

1. It has only eight data lines. Therefore, it has | It has sixteen data lines. Therefore it has
ADO - AD7 and A8 - A15 Signals. ADO - AD15 signals.

2. As data bus is 8-bit wide, it does not have It has BHE signal to access higher byte.
BHE signal.

3. It has 4 byte instruction queue. Due to 8-bit It has 6 byte instruction queue.
data bus, instruction fetching is slow and
4 bytes are sufficient for queue.

4. Its pin number 34 is SS. It acts as Spin__ | its pin number 34 is BHE/S;. During T (first
the minimum mode. In maximum mode, SS, | ciock cycle) BHE should be used to enable
pin is always high. data on to the most significant byte of the

data bus. During Ty, T3 and T4 status of this
pin is logic 0. In maximum mode, 8087
monitors this pin tc identify the CPU as a
8088 or a 8086, and accordingly sets its own
queue length to 4 or 6 bytes.

5. In minimum mode its pin 28 is assigned to

signal IO/M

In minimum mode its pin 28 is assigned to
signal M/IO

Table 2.2

Microprocessor 2-16 8086 / 8088 CPU

In short we can say that the differences between 8088 and 8086 are only in their BIU
and not in EU. The execution unit (EU) is same for both. As EU is same, the programming
instructions are exactly the same for each. Programs written for the 8086 can be run on the
8088 without any changes.

Review Questions

List the features of 8086 microprocessor.

Explain the architecture of 8086 processor with the help of neat block diagram.
What is the function of bus interfacing unit ?

What is the instruction queue ? Explain its advantage.

What is pipelining ?

Explain the register organisation of 8086.

What are segment registers ? Explain the purpose of them.

Explain the purpose of pointers and index registers.

What is the function of flag register ?

How physical address is generated in 8086 ?

© ® N S R o

e
~_ O

. Draw the bit pattern for flag register of 8086 and explain the significance of each bit.

=
]

List the rules for memory segmentation.

[y
w

What are the advantages of using memory segmentation ?

)
s

What do you mean by index registers ?

What are the functions of SI and DI registers ?
Draw the architecture of 8088 microprocessor.
What are the differences between 8086 and 8088 ?

[T R TR
N S O

Qaa

Instruction Set of 8086/8088 and
Assembly Language Programming
M———H

—

3.1 Introduction

The 8086 instruction set includes equivalents of the 8085 instructions plus many new
ones. The new instructions contain operations such as signed /unsigned multiplication and
division, bit manipulation instructions, string instructions, and interrupt instructions.

The 8086 has approximately 117 different instructions with' about 300 opcodes. 1...
8086 instruction set contains no operand, single operand, and two operand instructions.
Except for string instructions which involve array operations, the 8086 instructions do not
permit memory to memory operations.

In this chapter we study the addressing modes, instruction set of 8086 and assembler
directives.

3.2 Addressing Modes

We have seen how the 8086 fetches code bytes from memory by generating 20-bit
physical address with the help of IP and CS. We have also seen how the 8086 accesses the
stack using SS and SP. In this section we will see the different ways that an 8086 can
access the data. The different ways that a processor can access data are referred to as
addressing modes.

The addressing modes of any processor can be broadly classified as :
¢ Data addressing modes.
® Program memory addressing modes.

* Stack memory addressing modes.

3.2.1 Data Addressing Modes
The data addressing modes can be further classified as

1. Addressing modes for accessing immediate and register data (register and
immediate modes).

2. Addressing modes for accessing data in memory (memory modes).

3. Addressing modes for accessing 1/0 ports (I/O modes).
(3-1)

Microprocessor 3-2 Instruction Set of 8086/8088 and ALP

Addressing Modes for Accessing Immediate and Register Data

1. Register Addressing Mode

This mode specifies the source operand, destination operand, or both to be contained
in an 8086 register.

Direction of data flow

MOV AL, BL AL - BL

Destination register Source register

Note : Both source and destination operands are in 8086 register

Examples :
MOV BX, CX ; Copies the 16-bit contents of CX into BX
MOV CL, BL ; Copies 8-bit contents of BL into CL.

2. Immediate Addressing Mode

In an immediate mode, 8 or 16-bit data can be specified as a part of instruction.

7 0
MOV AL, 20H AL }e———20H
Destination operand Immediate data
is a 8086 register as a source operand
15 0
MOV AX, 1234 H AX j«——1234 H
Destination operand Immediate data
is a 8086 register as a source operand

Note : Arrow indicates direction of data flow

Exampies :
MOV BL, 26H ; Copies the 8-bit data 26H into BL

MOV CX, 4567H ; Copies the 16-bit data 4567H into CX.

Microprocessor 3-3 Instruction Set of 8086/8088 and ALP

Addressing Modes for Accessing Data in Memory

As mentioned before, the Execution Unit (EU) has direct access to all registers and
data for register and immediate operands. However, the EU cannot directly access the
memory operands. It must use the BIU segment registers to access memory operands. For
example, when the EU needs to access a memory location, it sends an offset value to the
BIU. This offset is also called the Effective Address (EA). Note that EA is displacement of
the desired location from the segment base. As mentioned before, the BIU generates a
20-bit physical address after shifting the contents of the desired segment register four bits
to the left and then adding the 16-bit EA to it.

There are six ways to specify effective address (EA) in the instruction.

a. Direct addressing mode b. Register indirect addressing mode
c. Based addressing moede d. Indexed addressing mode
e. Based indexed addressing mode f. String addressing mode.

1. Direct Addressing Mode :

In this mode, the 16-bit effective address (EA) is taken directly from the displacement
field of the instruction. The displacement (unsigned 16-bit or sign-extended 8-bit number)
is stored in the location following the instruction opcode.

Memory
f\/\

40H 1 43001 H
MOV AL, [3000H] 60H |- 60H | 13000 H <—

AL

\/\J

10000H+3000H
DS x (10H)+3000H

DS 1000

Memory

/‘\
10 13001H

MOV (3000H), CX 10 20 - 20 13000H ~=—
CH CL 12FFFH

10000 H +3000 H
DSx(10 H)+3000 H

DS 1000

Note : 1. Assume DS = 1000
*. Physical address = DS x(10H)+ 3000H
=1000[0]+ 3000H = 13000H

2. Arrow indicates direction of data flow.

Microprocessor 3-4 Instruction Set of 8086/8088 and ALP

Example :
MOV CL, [9823H] ; This instruction will copy the contents of the
; memory location, at a displacement of 9823H from the
; data segment base, into the CL register. Here, 9823H is
; the effective address (EA) which is written
; directly in the instruction.

2. Register Indirect Addressing Mode

In this mode, the EA is specified in either a pointer register or an index register. The
pointer register can be either base register BX or base pointer register BP and index
register can be either Source Index (SI) register or Destination Index (DI) register. The
20-bit physical address is computed using DS and EA.

Memory
] 20 1120001H
MOV BX, (CX) 20 30 30 12000H -=
BH BL 11FFFH
L_ﬂ__)
BX T~/
1000[0JH
DS| 1000H DS x (10H)
12000H
Physical address
2000H
CX 2000H Effective
address
Example :

1. MOV [DI], BX ; The instruction copies the 16-bit contents of BX into a
; memory location offset by the value of EA specified in DI
; from the curient contents in DS. Now, if [DS] = 7205H,
; [DI] = 0030H, and [BX] = 8765H, then after MOV [DI], BX,
; content of BX (8765H) is copied to memory locations
; 72080H and 72081H.

Microprocessor 3-5 Instruction Set of 8086/8088 and ALP

2. MOV DL, [BP] ; This instruction copies the 8-bit
; contents in DL from the memory location offset by the
; value of EA specified in B P from the contents of SS.
; Because data addressed by BP are by default located in
; stack segment (SS).

3. Base-Plus-Index Addressing :

Base-plus-index addressing is similar to indirect addressing because it indirectly
addresses memory data. This addressing uses one base register (BP or BX), and one index
register (DI or SI) to indirectly address memory. The base register often holds the
beginning location of a memory array, while the index register holds the relative position
of an element in the array. Remember that whenever BP addresses the memory data, the
contents of stack segment, BP and index register are used to generate physical address.

Locating Data with Base-Pulse-Index Addressing :

Memory
MOV CX, (BX+DI) o ~—
i 10H]12031H
10H | 40H 40H | 12030H -—f
CH CL
N MJ

CX

DS 1000H 1000[1H
DS x (10H)
12000H 12030H
BX 2000H 2000H
DI 2000H

Locating Array Data Using Base-Plus-Index Addressing :

A main use of the base-plus-index addressing mode is to address elements in a
memory array. Suppose that the array is located in the data segment beginning from
memory location ARRAY. To access a particular element within the array we have to load
the BX register (base) with the beginning address of the array, and the DI register (index)
with the element number to be accessed. This is illustrated in Fig. 3.1.

Microprocessor 3-6 Instruction Set of 8086/8088 and ALP

MOV CX, (BX+DI) /'\1
7 30H
30H 40H |- 40H ARRAY +6 4———
CH CL ARRAY+5
g_v____)
CX ARRAY+4 ARRAY + DI
ARRAY+3 Di| Element }|Index
ARRAY+2
ARRAY+1
ARRAY ~——
T
RAY
DS | Segment base () AR

BX l ARRAY base Ir

Fig. 3.1
4. Register Relative Addressing :
Register relative addressing is similar to base-plus-index addressing. Here, the data in
a segment of memory are addressed by adding the displacement to the contents of a base
or an index register (BP, BX, DI or SI). Remember that displacement should be added to
the register within the []. This is illustrated in the Fig. 3.2. Displacement can be any 8-bit
or 16-bit number.

MOV CX, [BX + 0003H] or MOV CX, [BX +3]

3 10H |51004H
10H | 20H 20H |61003H <—
CH cL 61002H
L'—W—_"
CX "
6000[0]H _,
DS | 6000H P mi0H) ®
BX 1000H 1000H e~ 1003H
Base Displacement

03H
Fig. 3.2

Microprocessor 3-7 Instruction Set of 8086/8088 and ALP

Note :

e Displacement can be subtracted from the register : MOV AL, [DI-2].

* Displacement can be an offset address appended to the front of the [] :
MOV AL, OFF_ADD [DI + 4].

Example : MOV AL, LAST [SI + 2] ; This instruction copies the contents of the 20-bit
address computed from the displacement LAST, SI + 2 and DS into AL.

Addressing Array Data with Register Relative :

The Fig. 3.3 shows how to address data element within the array with register relative
addressing.

MOV CX, ARRAY (DI) /'_

! 30H ARRAY+6
30H 40H 40H ARRAY +5 ~¢————
CcH ¢c ARRAY+4
—_—
CX ARRAY+3 DI} Element |Index
ARRAY+2
ARRAY+1
ARRAY
._./_J
DS [Segment base T
ARRAY

Displacement in the
segment register

Fig. 3.3

5. Base Relative Plus Index Addressing :

The base relative plus index addressing mode is similar to the base plus index
addressing mode, but it adds a displacement, besides using a base register and an index
register to generate a physical address of the memory. This addressing mode is suitable to
address data within the two dimensional array.

Microprocessor 3-8 Instruction Set of 8086/8088 and ALP

Addressing Data with Base Relative Plus Index :

The Fig. 3.4 shows how data can be accessed with base relative plus index addressing
mode.

MOV AL,[BX + SI + 10H]

’-\/_
20310H
"

o

0300H 0310H
gx | o1oo0H ® ©, ¥

10H
«
DS| 2000H } 20000H

DS x (10H)

Fig. 3.4
Addressing Arrays with Base Relative-Plus-Index :

As mentioned earlier this addressing mode is useful in addressing two dimensional
array. Two dimensional array usually stores records. For example, student record such as
its name, roll number etc. Therefore, each record contains number of data elements. To
access data element from a particular record we use base register to hold the beginning
address of the array of records, index register to point a particular record in the array of
records and displacement to point a particular element in the record. This is illustrated in

Fig. 3.5.
2
1
0 Record+3
AL 2
1 i+) Displacement
g Record+2 ~e—
1
g Record+1 c+><— S1
1
0
Record ~-—]
e —
DS
0
BX

Fig. 3.5

Microprocessor 3-9 Instruction Set of 8086/8088 and ALP

6. String Addressing Mode :

This mode uses index registers. The string instructions automatically assume SI to
point to the first byte or word of the source operand and DI to point to the first byte or
word of the destination operand. The contents of SI and DI are automatically incremented
(by clearing DF to 0 by CLD instruction) or decremented (by setting DF to 1 by STD
instruction) to point to the next byte or word. The segment register for the source is DS.
The segment register for the destination must be ES.

Exampile :
MOVS BYTE ; If [DF] = 0, [DS] = 3000H, [SI] = 0600H, [ES] =5000H,
; [DI] = 0400H, [30600H] = 38H, and [50400H] = 45H, then
; after execution of the MOVS BYTE, [50400H] = 38H,
; [SI] = 0601H, and [DI] = 0401H.
Addressing Modes for Accessing /0 Ports (/0 Modes)

Standard 1/0 devices uses port addressing modes. For memory-mapped 1/0, memory
addressing modes are used. There are two types of port addressing modes : direct and
indirect.

In direct port mode, the port number is an 8-bit immediate operand. This allows fixed
access to ports numbered 0 to 255.

Example :
OUT 05H, AL ; Sends the contents of AL to 8-bit port O5H.
IN AX, 80H ; Copies 16-bit contents of port 80H
In indirect port mode, the port number is taken from DX allowing 64 K 8-bit ports or
32 K 16-bit ports.

Exampile :
IN AL, DX ; If [DX] = 7890H, then it copies 8-bit content of port 7890H
; into AL.
IN AX, DX ; Copies the 8-bit contents of ports 7890H and 7891H into AL

; and AH, respectively.
Note : The 8-bit and 16-bit I/O transfers must take place via AL and AX, respectively.

3.2.2 Program Memory Addressing Modes

JMP (Jump) and CALL instructions use program memory addressing modes. These
instruction have three distinct forms : direct, relative and indirect. Let us see these forms
and corresponding addressing modes.

Microprocessor 3-10 Instruction Set of 8086/8088 and ALP

Direct program memory addressing :

In this addressing mode address where to transfer program control is specified within
the instruction alongwith the opcode. The Fig. 3.6 shows the direct intersegment JMP
instruction and the four bytes required to store the address 20000H. This JMP instruction
loads CS with 2000H and IP with 0000H to jump to memory location 20000H for the next
instruction. An intersegment jump is a jump where destination location is from a different
segment; it can be any memory location within the entire memory locations. Therefore,
intersection jump is also known as far jump.

Opcode Offset (low) Offset (high) Segment (low) Segment (high)

JMP 2000H EA 00 00 00 00

Fig. 3.6

Like JMP instruction, CALL instruction also uses direct program addressing with
intersegment or far CALL instruction. Usually, in both instructions (JMP or CALL) the
name of a memory address, called a label is specified in the instruction instead of address.

Relative program memory addressing :

In this addressing mode, the term relative is restricted to instruction pointer (IP). For
example, if a JMP instruction skips the next 5 bytes of memory, the address in relation to
the instruction pointer is a 5 that adds to the instruction pointer. This generates the

address of the next program instruction. This is illustrated in Fig. 3.7.
Opcode

20000 H EB] JMP [05]
20001 H 05
20002 H -

20003 H Offset

20004 H
20005 H
20006 H
20007 H
20008 H

Fig. 3.7

It is important to note that in JMP instruction, opcode takes one byte and displacement
may take one or two byte. When displacement is one byte (8-bit), it is called short jump.
When displacement is two byte (16-bit), it is called near jump. In both (short and near)
cases only contents of IP register are modified; contents of CS register are not modified.
Such jumps are called intrasegment jumps because jumps are within the current code
segment.

The relative JMP and CALL instructions can have either an 8-bit or a 16-bit signed
displacement that allows a forward memory reference or a reverse memory reference.

Microprocessor 3-11 Instruction Set of 8086/8088 and ALP

Indirect program memory addressing :

The 8086 allows several forms of program indirect memory addressing for the JMP
and CALL instructions. In this addressing mode, it is possible to use any 16-bit register
(AX, BX, CX, DX, SP, BP, DI or SI); any relative register ([BP], [BX], [DI], or [SI]); and any
relative register with displacement to specify the jump address. This is illustrated in
Table 3.1.

Instruction Operation
JMP BX Jumps to memory location addressed by BX within current code
segment.
IP « BX
JMP NEAR PTR [BX] Jumps to memory location addressed by the contents of the data
segment memory location addressed by BX within the current code
segment.

IP « ([BX+1], [BX])
High byte Low byte
JMP NEAR PTR [DI + 2] Jumps to memory location addressed by the contents of the data

segment memory location addressed by DI plus 2 within the current
code segment.

IP « (DI +3], [DI+ 2)
High byte Low byte

JMP ARRAY [BX] Jumps to memory location addressed by the contents of the data
segment memory location addressed by ARRAY plus BX with the
current code segment.

IP « ([ARRAY + BX + 1], [ARRAY + BX])
High byte Low byte

Table 3.1
3.2.3 Stack Memory Addressing Modes

The stack is a portion of read/write memory set aside by the user for the purpose of
storing information temporarily. When the information is written on the stack, the
operation is called PUSH. When the information is read from stack, the operation is called
a POP.

The microprocessor stores the information, much like stacking plates. Using this
analogy of stacking plates it is easy to illustrate the stack operation.

Fig. 3.8 shows the stacked plates. Here, we realize that
if it is desired to take out the first stacked plate we will
have to remove all plates above the first plate in the
reverse order. This means that to remove first plate we will
have to remove the third plate, then the second plate and
finally the first plate. This means that, the first information

Fig. 3.8 Stacked plates ,;shed on to the stack is the last information popped off
from the stack. This type of operation is known as a first in, last out (FILO). This stack is
implemented with the help of special memory pointer register. The special pointer register

Microprocessor 3-12 Instruction Set of 8086/8088 and ALP

is called the stack pointer. During PUSH and POP operation, stack pointer register gives
the address of memory where the information is to be stored or to be read. The stack
pointer’s contents are automatically manipulated to point to stack top. The memory
location currently pointed by stack pointer is called top of stack.

Stack Structure of 8086/88

The 8086/88 has a special 16-bit register, SP to work as a stack pointer. The stack
pointer (SP) register contains the 16-bit offset from the start of the segment to the top of
stack. For stack operation, physical address is produced by adding the contents of stack
pointer register to the segment base address in SS. To do this the contents of the stack
segment register are shifted four bits left and the contents of SP are added to the shifted
result. If the contents of SP are 9F20H and SS are 4000H then the physical address is
calculated as follows.

SS = 4000H after shifting four bits left SS = 40000H

Now
SS 40000H
+ SP 9F20H
Physical address 49F20H
™\

«— End of stack segment 4FFFFH

_— <«— Top of stack 49F20H

SP = 9F20H

SS = 4000H «— Start of stack segment 40000H
Y

Fig. 3.9 Stack and stack pointer
PUSH and POP Operations

Temporarily stores the contents of 16-bit register or memory location or program status
word, and retrieves when required. When programmer realizes the shortage of the
registers, he stores the present contents of the registers in the stack with the help of PUSH
instrucion and then uses the registers for other function. After completion of other
function programmer loads the previous contents of the register from the stack with the
help of POP instruction.

PUSH Operation :

The PUSH instruction decrements stack pointer by two and copies a word from some
source to the location in the stack where the stack pointer points. Here the source must be
a word (16-bit). The source of the word can be a general purpose register, a segment
register or memory. The Fig. 3.10 shows the map of the stack before and after execution of
PUSH AX and PUSH CX instructions.

Microprocessor 3-13 Instruction Set of 8086/8088 and ALP

Ax| 4455H —~——
cx| 1234H Ff AX| 4455H
End of stack segment End of stack segment
sP[FFFFH] — ~— 4FFFFH Cx[1234H ~— 4FFFFH
4FFFEH 44 H 4FFFEH
4FFFDH 55H 4FFFDH
4FFFCH 12H 4FFFCH
4FFFBH SP|FFFBH]—» 34H 4FFFBH ~=— Top of stack
4FFFAH AFFFAH
-1 > -2 -
40003H 40003H
40002H 40002H
40001H 40001H
ss L“OOW - ~e— Start of stack segment §s BOOUH]—> ~=— Start of stack segment
40000H 40000H
N m
(a) Before execution (b) After execution of PUSH AX and PUSH CX
Fig. 3.10

POP Operation :

The POP instruction copies a word from the stack location pointed by the stack pointer
to the destination. The destination can be a general purpose register, a segment register, or
a memory location. After the word is copied to the specified destination, the stack pointer
is automatically incremented by 2. The Fig. 3.11 shows the map of the stack before and
after execution of POP DX and POP BX instructions.

BXI I DX I BXI 4455H ' DX 1234H
End of stack segment End of stack segment 4FFFFH
~— 4FFFFH SP|[FFFFH]— " Top of stack
44H 4FFFEH 44H 4FFFEH
55 H 4FFFDH 55 H 4FFFDH
12 H 4FFFCH 12H 4FFFCH
SP[FFFBH]—=| 34 H AFFFBH =— Top of stack 34 H 4FFFBH
4FFFAH 4FFFAH
= = = =
40003H 40003H
40002H 40002H
40001H 40001H
Ss 'ﬂ)m_’ ~-— Start of stack segment SS Iﬂom—' ~=— Start of stack segment
~_/_J 40000H 40000H
—
(a) Before execution (b) After execution of PUSH AX and PUSH CX
Fig. 3.11

CALL Operation

The CALL instruction is used to transfer execution to a subprogram or procedure.
There are two basic types of CALLs, near and far. A near CALL is a call to a procedure
which. is in the same code segment as the CALL instruction. When the 8086 executes a

Microprocessor 3-14 Instruction Set of 8086/8088 and ALP

near CALL instruction it decrements the stack pointer by two and copies the offset of the
next instruction after the CALL on the stack. It loads IP with the offset of the first
instruction of the procedure in same segment.

A far CALL is a call to a procedure which is in a different segment from that which
contains the CALL instruction. When the 8086 executes a far CALL it decrements the stack
pointer by two and copies the contents of the CS register to the stack. It then decrements
the stack pointer by two again and copies the offset of the instruction after the CALL to
the stack. Finally, it loads CS with the segment base of the segment which contains the
procedure and TP with the offset of the first instruction of the procedure in that segment.

RET Operation

The RET instruction will return execution from a procedure to the next instruction
after the CALL instruction in the calling program. If the procedure is a near procedure (in
the same code segment as the CALL instruction), then the return will be done by replacing
the instruction pointer with a word from the top of the stack.

If the procedure is a far procedure (in a different code segment from the CALL
instruction which calls it), then the instruction pointer will be replaced by the word at the
top of the stack. The stack pointer will then be incremented by two. The code segment
register is then replaced with a word from the new top of the stack. After the code
segment word is popped off the stack, the stack pointer is again incremented by two.
These words/word are the offset of the next instruction after the CALL. So 8086 will fetch
the next instruction after the CALL.

Overflow and Underflow of Stack

We have seen the PUSH operation. During this operation stack pointer is decremented
by two. We know that maximum length of stack segment is 64 K. If we go on performing
PUSH operations successively, at one time the contents of SP will be 0000H. Any further
attempt to PUSH data on the stack will result in stack overflow.

On the other hand, if we go on performing POP operations successively, at one time
the contents of SP will be FFFFH. Any further attempt to POP data from the stack will
result in stack underflow.

3.3 Instruction Set of 8086/8088

The instruction set of the 8086 is divided into Eight major groups as follows :
e Data movement instructions

e Arithmetic and logic instructions

¢ String instructions and

e Program control transfer instructions
e [teration control instructions

e Processor control instructions

Microprocessor 3-15 Instruction Set of 8086/8088 and ALP

* External hardware synchronization instructions
¢ Interrupt instructions

3.4 Data Movement Instructions
The data movement instructions can be classified as :
® MOV instructions to transfer byte or word.
e PUSH/POP instructions.
* Load effective address instructions.
e String data transfer instructions.
¢ Miscellaneous data transfer instructions.

3.4.1 MOV Instruction

It is a general purpose instruction to transfer byte or word from register to register,
register to memory or from memory to register.

MOV destination, source

The MOV instruction copies a word or a byte of data from some source to a
destination. The destination can be a register or a memory location. The source can be a
register, a memory location, or an immediate number. The source and destination in an
instruction can’t both be memory locations. The source and destination in a MOV
instruction must be of same type i.e. either both must be byte or word.

MOV instruction does not affect any flags.

Examples :
MOV BX, 592FH ; Load the immediate number 592FH in BX
MOV CL, [357AH] ; Copy the contents of memory location, at a

; displacement of 357AH from data segment base,
; into the CL register.
MOV [734AH], BX ; Copy the contents of BX register to two memory
; locations in the data segment. Copy the contents
; of BL register to memory location at a
; displacement of 734AH and BH register
; to memory location at a displacement of
; 734BH.
MOV DS, CX ; Copy word from CX register to data
; segment register.
MOV TOTAL [BP], AX ; Copy AX to two memory locations. AL to
; first location, AH to second. Effective
; address, EA, is the sum of displacement

Microprocessor 3-16 Instruction Set of 8086/8088 and ALP

; represented by TOTAL and contents of BP.
; Physical address = EA + SS.

MOV CS : TOTAL [BP], AX ; Same as above instruction, but physical
; address = EA+CS. Because the segment

; overide prefix is CS.

3.4.2 PUSH/POP Instructions

These instructions are used to load or receive data from the stack memory.
PUSH source

The PUSH instruction decrements stack pointer by two and copies a word from some
source to the location in the stack where the stack pointer points. Here the source must be
a word (16-bit). The source of the word can be a general purpose register, a segment
register or memory.

It is important to note that whenever data is pushed onto the stack, the first (most
significant) data byte moves into the stack segment memory location addressed by SP-1.
The second (least significant) data byte moves into the stack segment memory location
addressed by SP-2.

Examples :
1. PUSH CX ; Decrements SP by 2, copy CX to stack
The Fig. 3.12 shows the execution of PUSH CX instruction.
Memory
stack segment
/\/
30036H
30035H
CX
CH CL 30034H <—
20 30032H -
30031H
30030H
/‘\/
/_/
s
30000H

SSI 3000 |ﬁ30000‘+'

SS x 10H
Fig. 3.12

Microprocessor 3-17 Instruction Set of 8086/8088 and ALP

Note : After execution of installation SP = 0032 H and it is indicated by dotted
arrow.
2. PUSH DS ; Decrement SP by 2, copy DS to stack
3. PUSH NEXT [BX] ; Decrement SP by 2, copy a word from memory in
; DS (i.e. PA = EA + DS) to stack with
; EA = NEXT + [BX]
PUSHF

Puts the flag register contents on the stack. Whenever this instruction is executed, the
most significant byte of flag register moves into the stack segment memory location
addressed by SP-1. The least significant byte of flag register moves into the stack segment
memory location addressed by SP-2.

POP destination

The POP instruction copies a word from the stack location pointed by the stack pointer
to the destination. The destination can be a general purpose register, a segment register, or
a memory location. After the word is copied to the specified destination, the stack pointer
is automatically incremented by 2. Whenever data is removed from the stack, the byte
from the stack segment memory location addressed by SP moves into the most significant
byte of the destination register and the byte from the stack segment memory location
addressed by SP + 1 moves into the least significant byte of the destination register.

Examples :
1. POPCX ; Copy a word from top of stack
; to CX and increment SP by 2.
The Fig. 3.13 shows the execution of POP CX instruction.

o~

30045H

30044H -~ -4

40 30043H !
o s -

CH CL
Rttt 30041H
CX 30040H
-
30000H
30000
SS | 3000 +
SS x 10H

Microprocessor 3-18 instruction Set of 8086/8088 and ALP

Note : After execution of instruction SP = 0044H and it is indicated by dotted arrow.
2. POP DS ; Copy a word from top of stack
; to DS and increment SP by 2.
3. POP NEXT [BX] ; Copy a word from top of stack to memory in DS
; (i.e. PA = EA + DS) with EA = NEXT + [BX], and
; increment SP by 2.
Note : POP CS is illegal.

POPF

Removes the word from top of stack to the flag register. Whenever this instruction is
executed, the byte from the stack segment memory location addressed by SP moves into
the most significant byte of the flag register and the byte from the stack segment memory
location addressed by SP+1 moves into the least significant byte of the flag register.

Initializing the stack

Before going to use any instruction which uses stack for its operation we have
initialize stack segment, and we have reverse the memory area required for the stack. The
stack can be initialized by including following sequence of instructions in the program.

METHOD 1 :
ASSUME CS : CODE, DS : DATA, SS : STACK

STACK SEGMENT
S_DATA DB 100 DUP (?)
STACK ENDS

Note : Matter typed in Bold letters is included to initialize stack. This program sequence
reserves 100 bytes for the stack operation.

METHOD 2 :
Syntax : - Stack [size]
Example : - Stack 100

The -stack is a directive, which provides shortcut in definition of the stack segment.
The default size is 1024 bytes. The instruction stack 100 reserves 100 bytes for the stack
operation.

3.4.3 Load Effective Address
The load effective address group includes following instructions,

e LEA

Microprocessor 3-19 Instruction Set of 8086/8088 and ALP

e LDS
e LES

LEA Instruction : Load Effective Address : LEA register, source

This instruction determines the offset of the variable or memory location named as the
source and loads this address in the specified 16-bit register. Flags are not affected by LEA
instruction.

Examples :
LEA CX, TOTAL ; Load CX with offset of TOTAL in DS.
LEA BP, SS : STACK_TOP ; Load BP with offset of STACK_TOP in SS.
LEA AX, [BX] [DI] ; Load AX with EA = [BX] + [DI]

LDS Instruction : Load register and DS with words from memory. LDS register,
memory address of first word.

This instruction copies a word from two memory locations into the register specified in
the instruction. It then copies a word from the next two memory locations into the DS
register.

Examples :
LDS CX, [391AH] ; Copy contents of memory at displacement of
; 391AH and 391BH to CX. Then copy contents at
; displacement of 391CH and 391DH in DS.
LES Instruction : Load register and ES with words from memory. LES register, memory
address of first word.

This instruction loads new values into the specified register and into the ES register

from four successive memory locations. The word from the first two memory location is

copied intc the specified register and the word from the next two memory locations is
copied into the ES register.

Example :
LES CX, [3483H] ; Copy contents of memory at displacement of 3483H0
; in DS to CL, contents of 3484H in DS to CH and
; copy the contents of memory at displacement of
; 3485H and 3486H in DS to ES register.

3.4.4 String Data Transfer Instructions
MOVS/MOVSB/MOVSW

These instructions copy a byte or word from a location in the data segment to a
location in the extra segment. The offset of the source byte or word in the data segment
must be in the SI register. The offset of the destination in the extra segment must be
contained in the DI register. For multiple byte or multiple word moves the number of
elements to be moved is put in the CX register so that it can function as a counter. After
the byte or word is moved SI and DI are automatically adjusted to point to the next source

Microprocessor 3-20 Instruction Set of 8086/8088 and ALP

and the next destination. If the direction flag is 0, then SI and DI will be incremented by 1
after a byte move and they will incremented by 2 after a word move. If the DF is a 1, then
SI and DI will be decremented by 1 after a byte move and they will be decremented by 2
after a word move. MOVS affects no flags.

The way to tell the assembler whether to code the instruction for a byte or word move
is to add a “B” or a “W” to the MOVS mnemonic. MOVSB, for example, says move a
string as bytes. MOVSW says move a string as words.

Examples :
CLD ; Clear Direction Flag to autoincrement SI and DI
MOV AX, 0000H
MOV DS, AX ; Initialize data segment register to 0
MOV ES, AX ; Initialize extra segment register to 0
MOV SI, 2000H - Load offset of start of source string into SI
MOV DI, 2400H ; Load offset of start of destination into DI
MOV CX, 04H ; Load length of string in CX as counter
REP MOVSB ; Decrement CX and MOVSB until CX will be 0.

After move SI will be one greater than offset of last byte in source string. DI will be
one greater than offset of last byte of destination string. CX will be 0.

REP is a prefix which is written before MOVSB to repeat execution of it until CX=0.

REP/REPE/REPZ/REPNE/REPNZ Prefix

REP is a prefix which is written before one of the string instructions. These
instructions repeat until specified condition exists.

Instruction Code Condition for Exit
REP CcX=0
REPE/REPZ CX=0o0rZF =0
REPNE/REPNZ CX=0or2F =1
Examples :
REPZ CMP SB ; Compare string bytes until CX = 0
; or until string bytes not equal.
LODS/LODSB/LODSW

This instruction copies a byte from a string location pointed to by SI to AL, or a word
from a string location pointed to by SI to AX. LODS does not affect any flags. LODSB
copies byte and LODSW copies a word.

Microprocessor 3-21 Instruction Set of 8086/8088 and ALP

Examples :

CLD ; Clear direction flag so SI is autoincremented
MOV SI, OFFSET S_STRING ; Point SI at string
LODS S_STRING.

STOS/STOSB/STOSW

The STOS instruction copies a byte from AL or a word from AX to a memory location
in the extra segment. DI is used to hold the offset of the memory location in the extra
segment. After the copy, DI is automatically incremented or decremented to point to the
next string element in memory. If the direction flag, DF, is cleared, then DI will
automatically be incremented by one for a byte string or incremented by two for a word
string. If the direction flag is set, DI will be automatically decremented by one for a byte
string or decremented by two for a word string. STOS does not affect any flags. STOSB
copies byte and STOSW copies a word.

Examples :
MOV DI, OFFSET D_STRING ; Point DI at destination string
STOS D_STRING ; Assembler uses string name to determine

; whether string is of type byte or type word.
; If byte string, then string byte replaced
; with contents of AL. If word string, then
; string word replaced with contents of AX.
MOV DI, OFFSET D_STRING ; Point DI at destination string
STOSB ; “B” added to STOS mnemonic directly
; tells assembler to replace byte in string with byte from

; AL. STOSW would tell assembler directly to replace a
; word in the string with a word from AX.

3.4.5 Miscellaneous Data Transfer Instructions

This group consists of following instructions.

o XCHG
e LAHF
e SAHF
o XLAT

¢ IN and OUT

Microprocessor 3-22 Instruction Set of 8086/8088 and ALP

XCHG Instruction : XCHG destination, source.

The XCHG instruction exchanges the contents of a register with the contents of another
register or the contents of a register with the contents of a memory location(s). The
instruction cannot exchange the contents of two memory locations. The source and
destination both must be words or bytes. The segment registers can’t be used in these
instructions.

Examples :
XCHG BX, CX ; Exchange word in BX with word in CX.
XCHG AL, CL ; Exchange byte in AL with byte in CL.

XCHG AL, SUM [BX] ; Exchange byte in AL with byte in memory at
; EA = SUM + [BX]. PA = EA + DS.
LAHF Instruction : Load lower byte of flag register in AH.
This instruction copies the contents of lower byte of 8086 flag register to AH register.
SAHF Instruction : Copy AH register to low byte of flag register.
The contents of the AH register are copied into the lower byte of the 8086 flag register.
XLAT / XLATB Instruction : Translate byte in AL.

The XLATB instruction replaces a byte in the AL register with a byte from a lookup
table in memory. BX register stores the offset of the starting address of the lookup table
and AL register stores the byte number from the lookup table. This instruction copies byte
from address pointed by [BX + AL] back into AL. This instruction does not affect flags.

IN and OUT Instructions
IN Instruction : Input a byte or word from port.

The IN instruction will copy data from a port to the accumulator. If an 8-bit port is
read, the data will go to AL and if an 16-bit port is read the data will goto AX.

The IN instruction can be executed in two different addressing modes,

1. Direct : In direct addressing mode 8-bit address of the port is a part of the

instruction.
Examples :
IN AL, OF8H ; Copy a byte from port O0F8H to AL.
IN AX, 95H ; Copy a word from port 95H to AX.

2. Indirect : In indirect addressing, the address of the port is referred from DX
register. Since DX is a 16-bit register, the port address can be any number between
0000H to FFFFH. Therefore it is possible address to upto 65,536 ports in this mode.

Microprocessor 3-23 Instruction Set of 8086/8088 and ALP

Examples :
MOV DX, 30F8H ; Load 16-bit address of the port in DX.
IN AL, DX ; Copy a byte from 8-bit port 30F8H to AL.
IN AX, DX ; Copy a word from 16-bit port 30F8H to AX.

OUT Instruction : Send a byte or word to a port.

The OUT instruction copies a byte from AL or a word from AX to the specified port.
The OUT instruction can be executed in two different addressing modes.
1. Direct : In direct addressing mode 8-bit address of the port is a part of the

instruction.
Examples :
OUT 0F8H, AL ; Copy contents of AL to 8-bit port OFS§H.
OUT 0FBH, AX ; Copy contents of AX to 16-bit port OFBH.

2. Indirect : In indirect addressing, the address of the port is referred from DX
register. It has advantage of accessing 2'° i.e. 65536 ports as mentioned earlier.

Examples :
MOV DX, 30F8H ; Load 16-bit address of the port in DX.
OUT DX, AL ; Copy the contents of AL to port 30F8H.
OUT DX, AX ; Copy the contents of AX to port 30F8H.

3.5 Arithmetic and Logic Instructions
The arithmetic and logic group of instructions include
¢ Addition instructions
e Subtraction instructions
e Multiplication instructions
e Division
e BCD and ASCII arithmetic instructions
¢ Comparison
¢ Basic logic instructions - AND, OR NOT, XOR
e Shift and rotate instructions

3.5.1 Addition

This group of instructions consist of following instructions
e ADD : Addition

» ADC : Addition with carry

e INC : Increment (Add 1)

Microprocessor 3-24 Instruction Set of 8086/8088 and ALP

ADD/ADC Instruction : ADD destination, source / ADC destination, source.

These instructions add a number from source to a number from destination and put
the result in the destination. The ADC, instruction also adds the status of carry flag into
the result. The source may be an immediate number, a register, or a memory location. The
source and the destination in an instruction cannot both be memory locations. The source
and destination both must be a word or byte. If you want to add a byte to a word, you
must copy the byte to a word location and fill the upper byte of the word with zeroes
before adding.

Flags affected : AF, CF, OF, PF, SF, ZF.

Examples :
ADD AL, OFOH ; Add immediate number OFOH to contents of AL.
ADC DL, CL . Add contents of CL to contents of DL with carry
; and store result in DL i.e. DL « DL + CL + CY
ADC DX, BX ; Add contents of BX to contents of DX with carry

; and store result in DX i.e. DX < DX + BX + CY
ADD CL, TOTAL [BX] ; Add byte from effective address

; TOTAL [BX] to contents of CL
ADD CX, TOTAL [BX] ; Add word from effective address

: TOTAL [BX] to contents of CX.

INC Instruction : Increment destination.

The INC instruction adds 1 to the specified destination. The destination may be a
register or memory location. The AF, OF, PF, SF and ZF flags are affected.

Examples :
INC AL ; Add 1 to contents of AL.
INC BX ; Add 1 to contents of BX.

NOTE : The carry flag CF is not affected.
If contents of 8-bit register are FFH and 16-bit register are FFFFH, after INC instruction
contents of registers will be zero without affecting carry flag.
INC BYTE PTR [BX] ; Increment byte at offset of BX in DS.
; BYTE PTR directive indicates to the assembler
; that the byte from memory is to be incremented.
INC WORD PTR [BX] ; Increment word at offset of BX in DS.
; WORD PTR directive indicates to the assembler
: that the word from memory is to be incremented.

Microprocessor 3-25 Instruction Set of 8086/8088 and ALP

3.5.2 Subtraction

This group of instructions consist of following group of instructions.
SUB : Subtraction
SBB : Subtraction with borrow

DEC : Decrement (subtract 1)

e NEG : 2's complement of a number
SUBJ/SBB Instruction : SUB destination, Source.

SBB destination, Source.

These instructions subtract the number in the source from the number in the
destination and put result in the destination. The SBB, instruction also subtracts the status
of carry flag from the result. The source may be an immediate number, a register, or a
memory location. The destination may be a register or a memory location. The source and
the destination both cannot be memory locations. The source and destination both must be
word or byte. If you want to subtract a byte from a word, you must copy the byte to a
word location and fill the upper byte of the word with zeroes before subtracting.

Flags affected : AF, CF, OF, PF, SF, and ZF.

Examples :
SUB AL, OFOH ; Subtract immediate number 0FOH
; from contents of AL store result in AL.
SBB DL, CL ; Subtract contents of CL and status of carry flag

; from the contents of DL and store result in DL.
;ie. DL « DL -CL -CY
SBB DX, BX ; Subtract contents of BX and status of carry
; flag from the DX and store result in DX.
; i.e. DX « DX -BX -CY
SUB CL, TOTAL [BX] ; Subtract byte from effective address TOTAL [BX]
; from the contents of CL and store result in CL
SUB CX, TOTAL [BX] ; Subtract word from effective address TOTAL [BX]
; from the contents of CX and store result in CX.

DEC Instruction : Decrement destination.

The DEC instruction subtract 1 from the specified destination. The destination may be
a register or a memory location. The AF, OF, PF, SF and ZF flags are affected.

Microprocessor 3-26 Instruction Set of 8086/8088 and ALP

Examples :
DEC AL : Subtracts 1 from the contents of AL.
DEC BX ; Subtracts 1 from the contents of BX.

Note : The carry flag CF is not affected.

If the contents of 8-bit register are 00H and 16-bit register are 0000H, after DEC
instruction contents of registers will be FFH and FFFFH respectively without affecting
carry flag.

DEC BYTE PTR [BX] ; Decrement byte at offset of BX in DS.

: BYTE PTR directive indicates to the assembler

; that the byte from memory is to be decremented.
DEC WORD PTR [BX] ; Decrement word at offset of BX in DS.

; WORD PTR directive indicates to the assembler

; that the word from memory is to be decremented.

NEG Instruction : Form 2’s complement.

This instruction replaces the number in a destination with the 2’s complement of that
number. The destination can be a register or a memory location. This instruction can be
implemented by inverting each bit and adding 1 to it.

The negate instruction updates the AF, CF, SF, PF, ZF and OF flags.

Examples :
; AL = 0011 0101 35H
NEG AL ; Replace number in AL with its 2’s complement
; AL = 1100 1011 = CBH

3.5.3 Comparison

The comparison instruction (CMP) compares a byte/word from the specified source
with a byte/word from the specified destination. The source and destination both must be
byte or word. The source may be an immediate number, a register, or a memory location.
The destination may be a register or a memory location. However the source and
destination both can’t be memory locations. The comparison is done by subtracting the
source byte or word from the destination byte or word. But the result is not stored in the
destination. Source and destination remain unchanged, only flags are updated.

Flags : The AF, OF, SF, ZF, PF and CF are updated by the CMP instruction.

Examples :
CMP BL, 01H ; Compare immediate number 01H with byte in BL.
CMP CX, BX ; Compare word in BX with word in CX.
CMP CX, TOTAL ; Compare word at displacement

; TOTAL in DS with word in CX.

Note : It is not possible to compare segment registers.

Microprocessor 3-27 Instruction Set of 8086/8088 and ALP

The result of comparison is checked by conditional jump, conditional call and
conditional return instructions. We discuss these instructions later in this chapter.

3.5.4 Multiplication

This group of instructions consist of following group of instructions.
* MUL : Unsigned multiplication
e IMUL : Signed multiplication

MUL Instruction : MUL source.

This instruction multiplies an unsigned byte from source and unsigned byte in AL
register or unsigned word from source and unsigned word in AX register. The source can
be a register or a memory location. When the byte is multiplied by the contents of AL, the
result is stored in AX. The most significant byte is stored in AH and least significant byte
is stored in AL. When a word is multiplied by the contents of AX, the most significant
word of result is stored in DX and least significant word of result is stored in AX.

Flags : MUL instruction affect AF, PF, SF, and ZF flags.

Examples :
MUL BL ; AL x BL, result in AX.
MUL BX ; AXx BX, result high word in DX low word in AX.
MUL WORD PTR [BX] ; AX times word in DS pointed by [BX]

; result high word in DX low word in AX.
IMUL Instruction :

This instruction multiplies a signed byte from some source and a signed byte in AL, or
a signed word from some source and a signed word in AX. The source can be register or
memory location. When a signed byte is multiplied by AL a signed result will be put in
AX. When a signed word is multiplied by AX, the high-order word of the signed result is
put in DX and the low-order word of the signed result is put in AX.

If the upper byte of a 16-bit result or the upper word of 32-bit result contains only
copies of the sign bit (all 0's or all 1's), then the CF and the OF flags will both be 0's. The
AF, PF, SF, and ZF flags are undefined after IMUL.

To multiply a signed byte by a signed word it is necessary to move the byte into a
word location and fill the upper byte of the word with copies of the sign bit. This can be
done using CBW instruction.

Examples :
IMUL BL ; AL x BL, result in AX
IMUL CX ; AX x CX, high-order word of result in DX and

; low-order word of result in AX.

Microprocessor 3-28 Instruction Set of 8086/8088 and ALP

3.5.5 Division

This group of instructions consists of following group of instructions
e DIV
e IDIV.

DIV Instruction : DIV source

This instruction is used to divide an unsigned word by a byte or to divide an
unsigned double word by a word.

When dividing a word by a byte, the word must be in AX register. After the division
AL will contain an 8-bit quotient and AH will contain an 8-bit remainder. If an attempt is
made to divide by 0 or the quotient is too large to fit in AL (greater than FFH), the 8086
will automatically execute a type O interrupt.

When a double word is divided by a word, the most significant word of the double
word must be in DX and the least-significant word must be in AX. After the division AX
will contain a 16-bit quotient and DX will contain a 16-bit remainder. Again, if an attempt
is made to divide by 0 or the quotient is too large to fit in AX register (greater than
FFFFH), the 8086 will do a type 0 interrupt. For DIV instruction source may be a register
or memory location.

To divide a byte by a byte, it is necessary to put the dividend byte in AL and fill AH
with all 0's. Similarly, to divide a word by a word, it is necessary to put the dividend
word in AX and fill DX with all 0's.

Flags : All flags are undefined after a DIV instruction.

Examples : ‘
DIV CL ; Word in AX/byte in CL,
; Quotient in AL, remainder in AH.
DIV CX ; Double word in DX and AX/ word in CX,

; Quotient in AX, remainder in DX.
IDIV Instruction : IDIV source

This instruction is used to divide a signed word by a signed byte, or to divide a
signed double word (32-bits) by a signed word. Rest all is similar to DIV instruction.

3.5.6 BCD and ASCII Arithmetic

The 8086 allows arithmetic manipulation of both BCD (Binary Coded Decimal) and
ASCIl (American Standard Code for Information Interchange) data. This is accomplished
by instructions that adjust the numbers for BCD and ASCIH arithmetic. Let us see
instructions used for BCD and ASCII arithmetic.

Microprocessor 3-29 Instruction Set of 8086/8088 and ALP

3.5.6.1 BCD Arithmetic

The 8086 provides two instructions to support BCD arithmetic. They correct result of a
BCD addition and a BCD subtraction. The DAA (decimal adjust after addition) instruction
follows BCD addition, and the DAS (Decimal Adjust After Subtraction) follows BCD
subtraction. Both instructions correct the result of the addition or subtraction so that it is a
BCD number.

DAA Instruction : Decimal Adjust Accumulator.
This instruction is used to make sure the result of adding two packed BCD numbers is
adjusted to be a legal BCD number.

Instruction works as follows :
1. If the value of the low-order four bits (D3-Dy) in the AL is greater than 9 or if AF
is set, the instruction adds 6 (06) to the low-order four bits.

2. If the value of the high-order four bits (D,D,) in the AL is greater than 9 or if
carry flag is set, the instruction adds 6 (60) to the high-order four bits.

Examples :

1. ; AL = 0011 1001 = 39 BCD
; CL = 0001 0010 = 12 BCD

Add AL, CL ; AL = 0100 1011 = 4BH

DAA ; Add 0110 Because 1011 > 9
; AL = 0101 0001 = 51 BCD

2. ; AL = 1001 0110 = 96 BCD
; BL = 0000 0111 = 07 BCD

ADD AL, BL ; AL = 1001 1101 = 9DH

DAA ; Add 0110 Because 1101 > 9

; AL = 1010 0011 = A3H
; 1010 > 9 so add 0110 0000
; AL = 0000 0011 = 03 BCD, CF = 1. The result is 103.
The instruction updates the AF, CF, PF, and ZF. The OF is undefined after DAA
instruction.
Note : Only works for AL.
DAS Instruction : Decimal Adjust After Subtraction.

This instruction is used after subtracting two packed BCD numbers to make sure the
result is correct packed BCD. Instruction works as follows :

1. If the value of the low-order four bits (D3-Dy) in the AL is greater than 9 or if AF
is set; the instruction subtracts 6 (06) from the low-order four bits.

2. If the value of the high-order four bits (D,-D,) in the AL is greater than 9 or if
carry flag is set, the instruction subtracts 6 (60) from the high-order four bits.

Microprocessor 3-30 Instruction Set of 8086/8088 and ALP

Examples :

1. ; AL = 0011 0010 = 32 BCD
; CL = 0001 0111 = 17 BCD

SUB AL, CL ; AL = 0001 1011 = 1BH
; Subtract 0110 Because 1011 > 9
; AL = 0001 0101 = 15 BCD

2. ; AL = 0010 0011 = 23 BCD
; CL = 0101 1000 = 58 BCD

SUB AL, CL ; AL =1100 1011 = CBHCF =1

; Subtract 0110 (6) Because 1011 > 9
; AL = 1100 0101 = C5H
; Subtract 0110 0000 Because 1100 > 9
; AL = 0110 0101 = 65 BCD CF =1,
; CF = 1 means borrow
; is needed means number is negative (- 65).
The DAS instruction updates the AF, CF, PF, and ZF. The OF flag is undefined after
DAS instruction.

Note : DAS only works for AL.

3.5.6.2 ASCII Arithmetic

ASCI numbers range in value from 30H to 39H for the numbers 0-9. The 8086
provides four instructions for ASCII arithmetic.

e AAA:ASCII adjust after addition

e AAS :ASCII adjust after subtraction

e AAM:ASCI adjust after multiplication

e AAD :ASCII adjust before division
AAA Instruction : ASCII Adjust for Addition.

The numbers from 0-9 are represented as 30H-39H in ASCII code. When you want to
add two decimal digits which are represented in ASCII code, it is necessary to mask upper
nibble (3) from the code before addition. The 8086 allows you to add the ASCII codes for
two decimal digits without masking off the “3" in the upper nibble of each digit. The AAA
instruction can be used after addition to get the current result in unpacked BCD form.
Examples :

; AL = 0011 0100 ASCII 4

; CL = 0011 1000 ASCII 8
ADD AL, CL ; AL =0110 1100

; 6CH = Incorrect temporary result
AAA ; AL = 0000 0010 Unpacked BCD for 2.

Microprocessor 3-31 Instruction Set of 8086/8088 and ALP

; Carry =1 to indicate correct answer is 12
decimal.

The AAA instruction updates the AF and the CF, but the OF, PF, SF, and ZF are left
undefined.

Note : The AAA instruction only works on the AL register.
AAS Instruction : ASCII Adjust After Subtraction.

The numbers from 0-9 are represented as 30-39 in ASCII code. When you want to
subtract two decimal digits which are represented in ASCII code, it is necessary to mask
upper nibble (3) from the code before subtraction. The 8086 allows you to subtract the
ASCII codes for two decimal digits without masking off the “3" in the upper nibble of
each digit. The AAS instruction can be used after subtraction to get the current result in
unpacked BCD form.

Examples :
1. ; AL = 0011 1000 ASCII 8
; CL = 0011 0010 ASCII 2
SUB AL, CL ; AL = 0000 0110 BCD 06
;CE=0
AAS ; AL = 0000 0010 = BCD 06
; CF = 0 no borrow required
2. ; AL = 0011 0010 ASCII 2
; CL = 0011 1000 ASCII 8
SUB AL, CL ; AL = 1111 1010 = FAH
;CF=1
AAS ; AL = 0000 0110 = BCD 6

; CF = 1 borrow needed means (- 6)
AAM Instruction : ASCII Adjust After Multiplication.

After the two unpacked BCD digits are multiplied, the AAM instruction is used to
adjust the product to two unpacked BCD digits in AX.

Examples :
; AL = 0000 0100 = Unpacked BCD 4
; CL = 0000 0110 = Unpacked BCD 6
MUL CL ; AL x CL Result in AX.
; AX = 0000 0000 0001 1000 = 0018H
AAM ; AX = 0000 0010 0000 0100 = 0204H

; Which is unpacked BCD for 24.
Now by adding 3030H in AX register we get the result in ASCII form.

Microprocessor 3-32 Instruction Set of 8086/8088 and ALP

AAD Instruction : ASCII Adjust Before Division.

AAD converts two unpacked BCD digits in AH and AL to the equivalent binary
number in AL. This adjustment must be made before dividing the two unpacked BCD
digits in AX by an unpacked BCD byte. After the division AL will contain the unpacked
BCD quotient and AH will contain the unpacked BCD remainder. The PF, SF and ZF are
updated. The AF, CF and OF are undefined after AAD.

Examples :
; AX = 0403 unpacked BCD for 43 decimal, CL = 07H
AAD ; Adjust to binary before division,
; AX = 002BH = 2BH = 43 decimal.
DIV CL ; Divide AX by unpacked BCD in CL.

; AL = quotient = 06 unpacked BCD
; AH = remainder = 01 unpacked BCD

Now by adding 3030H in AX register we get the quotient and remainder in ASCI
form.

3.5.7 Basic Logic Instructions

The basic logic instructions include AND, OR, Exclusive-OR, and NOT. This group
also includes TEST instruction which is a special form of the AND instruction.

AND Instruction : AND destination, source.

We know that, AND operation with two inputs produces result logic 1 only when both
the inputs are logic 1. i.e. Y = A-B.

A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Table 3.2 Truth table for AND gate
This instruction logically ANDs each bit of the source byte or word with the
corresponding bit in the destination and stores result in the destination. The source may be
an immediate number, a register or a memory location. The destination may be a register

Microprocessor 3-33 Instruction Set of 8086/8088 and ALP

or a memory location. The source and destination both cannot be memory locations in the
same instruction. The CF and OF are both 0 after AND. The PF, SF and ZF are affected.
AF is undefined.

Examples :
1. ; AL = 1001 0011 = 93H
; BL = 0111 0101 = 75H
AND BL, AL ; AND byte in AL with byte in BL
; BL = 0001 0001 = 11H
2. ; CX = 0110 1011 1001 1110

AND CX, 00FOH ; CX = 0000 0000 1001 0000

The AND operation clears bits of a binary number. The task of clearing a bit in a
binary number is called masking. The Fig. 3.14 shows the process of masking.

— X XXX XX XX Unknown 8-bit binary number
— e 1111 0000 Masking pattern
XX XX Result
\—— Masked bits

Fig. 3.14 Masking using AND operation
OR Instruction : OR destination, source.

We know that, OR operation with two inputs produces result logic 1 when any one or
both inputs are logic 1ie.,Y = A + B.

A B v
0 0 . 0
0 1 1
1 0 1
1 1 1

Table 3.3 Truth table for OR gate
This instruction logically ORs each bit of the source byte or word with the
corresponding bit in the destination and stores result in the destination. The source may be
an immediate number, a register or a memory location. The destination may be a register

Microprocessor 3-34 Instruction Set of 8086/8088 and ALP

or a memory location. The source and destination both cannct be memory locations in the
same instruction. The CF and OF are both 0 after OR. The PF, SF and ZF are affected. AF
is undefined.

Examples :
1. ; AL = 1001 0011 = 93H
; BL = 0111 0101 = 75H
OR BL, AL ; OR byte in AL with byte in BL.
; BL = 1111 0111 = F7H
2. ; CX = 0110 1011 1001 1110
OR CX, 00FOH ; CX = 0110 1011 1111 1110

The OR instruction is used to set (make one) any bit in the binary number. This is
illustrated in Fig. 3.15.

XX XX XX XX Unknown 8-bit binary number
+ 1111 0000 Setting pattern

X XXX Result

\—— Set bits

Fig. 3.15 Setting bit/s using OR operation
XOR Instruction : XOR destination, source.

We know that, XOR operation produces result logic 1 when odd number of inputs are
logic 1ie. Y=AB+AB.

A B Y

0 0 0

0 1 1

1 0 1

1 1 0

Table 3.4 Truth table for XOR gate
This instruction logically XORs each bit of the source byte or word with the
corresponding bit in the destination and stores result in the destination. The source may be

Microprocessor 3-35 Instruction Set of 8086/8088 and ALP

an immediate number, a register or a memory location. The destination may be a register
or a memory location. The source and destination both cannot be memory locations in the
same instruction. The CF and OF are both 0 after XOR. The PF, SF and ZF are affected. AF
is undefined.

Examples :
1. ; AL = 1010 1111 = AFH
; BL = 1111 0000 = FOH
XOR BL, AL ; XOR byte in AL with byte in BL
; BL = 0101 1111 = 5FH
The XOR instruction is used if some bits of a register or memory location must be

inverted. This instruction allows part of a number to be inverted or complemented. This is
illustrated in Fig. 3.16.

(: X XX X X X X X Unknown 8-bit binary number
® 0000 1111 Pattern for inverting lower 4-bits
X X X X Result

‘; Inverted bits

Fig. 3.16 Inversion of part of a number using XOR operation

NOT Instruction : NOT destination.

The NOT instruction inverts each bit of a byte or a word. The destination can be
register or a memory location.

Flags : NOT instruction affects no flag.

Examples :
; AL = 0110 1100
NOT AL ; AL = 1001 0011
; CX = 1010 1111 0010 0110
NOT CX ; CX = 0101 0000 1101 1001

Test and bit test instructions :

The TEST instruction performs the AND operation. The difference is that the AND
instruction changes the destination operand, while the TEST instruction does not. A TEST
only affects the condition of the flag register, which indicates the result of the test.

PF, SF and ZF will be updated to show the results of the ANDing. PF has meaning
only for the lower 8-bits of the destination. AF will be undefined.

Microprocessor 3-36 Instruction Set of 8086/8088 and ALP

Examples :
TEST AL, CL ; AND CL with AL.
; Update flags, result is not stored.
TEST BX, CX ; AND CX with BX.

; Update flags, result is not stored.

The TEST instruction functions in the similar manner as a CMP instruction. The
difference is that the TEST instruction normally tests a single bit (or occasionally multiple
bits), while the CMP instruction tests the entire byte or word. The Fig. 3.17 shows the bit
pattern and test operation for testing of bit 0. If zero flag is set (Z = 1) after this operation,
the bit under test bit-0 is zero ; otherwise bit-0 is 1.

The zero flag is usually tested by JZ or JNZ instructions. Therefore, the TEST
instruction is usually followed by either the JZ or JNZ instruction.

XX XX XX XX Unknown 8-bit binary number
0000 D00 01 Bit pattern to test bit 0

0000 00 0! Result

—— Tested bit

Fig. 3.17 TEST operation
3.5.8 Shift and Rotate

3.5.8.1 Shift

Shift instructions position or move binary data to the left or right by shifting them
within the register or memory location. They also perform multiplication by powers of 2*"
(left shift) and division by powers of 27" (right shift). The shift operations can be classified
as logical shifts and arithmetic shifts. The logical shifts move a 0 into the rightmost bit
position for a logical left shift (SHL) and a 0 into the leftmost bit position for a logical
right shift (SHR). The arithmetic left shift (SAL) and logical left shift operations are
identical. However, arithmetic and logical right shifts are different because the arithmetic
right shift (SAR) copies the sign bit through the number, while the logical right shift
copies a 0 through the number. This is illustrated in Fig. 3.18. Logical shift operations are
used with unsigned numbers; they perform multiplication or division of unsigned
numbers. On the otherhand, arithmetic shift operations are used with signed numbers;
they perform multiplications or division of signed numbers.

Microprocessor 3-37 Instruction Set of 8086/8088 and ALP

CYy Target register or memory
SHL - - 0
CcY
SAL - - 0
CcY
SHR 0 —= > >

] cy

SAR > -

i

Sign bit (MSB)

Fig. 3.18 Shift operations
SAL/SHL Instruction : SAL/SHL destination, count.

SAL and SHL are two mnemonics for the same instruction. This instruction shifts each
bit in the specified destination to the left and 0 is stored at LSB position. The MSB is
shifted into the carry flag. The destination can be a byte or a word. It can be in a register
or in a memory location. The number of shifts are indicated by count. But if the number of
shifts required is one, you can place 1 in the count position. If number of shifts are greater
than 1 then shift count must be loaded in CL register and CL must be placed in the count
position of the instruction.

Diagram shows SAL instruction for byte operation.

cY B, Bg Bs By, By B, By By
0 |=—] 1] 0 1 1101 1 1 1 | -—o0
After Execution 1 0|1 1 0] 1 1 1 0

Flags : All flags are affected.

Microprocessor 3-38 Instruction Set of 8086/8088 and ALP

Examples :
SAL CX, 1 ; Shift word in CX 1 bit position left, 0 in LSB
MOV CL, 05H : Load desired number of shifts in CL
SAL AX, CL ; Shift word in AX left 5 times

; Os in 5 least-significant bits.
SHR Instruction : SHR destination, count

This instruction shifts each bit in the specified destination to the right and 0 is stored
at MSB position. The LSB is shifted into the carry flag. The destination can be a byte or a
word. It can be in a register or in a memory location. The number of shifts are indicated
by count. If number of shifts required is one, you can place 1 in the count position. But if
the number of shifts are greater than 1 then shift count must be loaded in CL register and
CL must be placed in the count position of the instruction.

Diagram shows SHR instruction for byte operation.

B, Bs Bs B, By B, By By cY
0 1 | 0 1 0 1 0 0 I 1 |-—— 0
After Execution of1]ofl1{o]1]oao]eo 1
Flags : All flags are affected.
Examples :
SHR CX, 1 ; Shift word in CX 1 bit position right, 0 in MSB.
MOV CL, 05H ; Load desired number of shifts in CL.
SHR AX, CL ; Shift word in AX right 5 times

; 0’s in 5 most significant bits.
SAR Instruction : SAR destination, count.

This instruction shifts each bit in the specified destination some number of bit
positions to the right. As a bit is shifted out of the MSB position, a copy of the old MSB is
put in the MSB position. The LSB will be shifted into CF. In the case of multiple shifts, CF
will contain the bit most recently shifted in from the LSB. Bits shifted into CF previously
will be lost.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one,
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Microprocessor 3-39 Instruction Set of 8086/8088 and ALP

Diagram shows SAR instruction for byte operation.

B B B B, By B, B, B oy
W - -
1 1 0 1 0 1 0 0 1

Flags : All flags are affected.

Examples :

SAR BL, 1 ; Shift byte in BL one bit position right.

MOV CL, 04H ; Load desired number of shifts in CL.

SAR DX, CL ; Shift word stored in DX 4-bit positions right.
3.5.8.2 Rotate

Rotate instructions position or move binary data by rotating the information in a
register or memory location, either from one end to another or through the carry flag. This
is illustrated in Fig. 3.19.

cY Target register or memory

RCL -
(Rotate left through carry)

CY

ROL - -—
(Rotate left)

CcYy

RCR
(Rotate right through carry)

cy

ROR -
(Rotate right)

Fig. 3.19 Rotate operations

Microprocessor 3-40 Instruction Set of 8086/8088 and ALP

ROL Instruction : ROL destination, count.

This instruction rotates all bits in a specified byte or word to the left some number of
bit positions. MSB is placed as a new LSB and a new CF.

Diagram shows ROL instruction for byte rotation.

[B; Bg Bg By By B, By By

1 [¢] 1 0 1 0 1 1 1

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Examples :
ROL CX, 1 ; Word in CX one bit position left, MSB to LSB and CF
MOV CL, 03H ; Load desired number of bits to rotate in CL.
ROL BL, CL ; Rotate BL three positions.

ROR Instruction : ROR destination, count.

This instruction rotates all bits in a specified byte or word to the right some number of
bit positions. LSB is placed as a new MSB and a new CF.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one,
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Diagram shows ROR instruction tur byte rotation.

|—‘ 1 0 1 0 0 0 1 1 0

Microprocessor 3-41 Instruction Set of 8086/8088 and ALP

Examples :
ROR CX, 1 ; Rotated word in CX one bit position right,
; LSB to MSB and CF.
MOV CL, 03H ; Load number of bits to rotate inn CL.
ROR BL, CL ; Rotate BL three positions.

RCL Instruction : RCL destination, count.

This instruction rotates all of the bits in a specified word or byte some number of bit
positions to the left along with the carry flag. MSB is placed as a new carry and previous
carry is placed as a new LSB.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one,
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position of the
instruction.

Diagram shows RCL instruction for byte rotation.

cy B, Bs By B, By B, B; By
0 1 0 1 0 1 1 0 1
1 0 1 0 1 1 0 1 0
Examples :
RCL CX, 1 ; Rotated word in CX 1-bit left, MSB to CF, CF to LSB.
MOV CL, 04H ; Load number of bit positions to rotate in CL.
RCL AL, CL ; Rotate AL 4-bits left.

RCR Instruction : RCR destination, count.

This instruction rotates all of the bits in a specified word or byte some number of bit
positions to the right along with the carry flag. LSB is placed as a new carry and previous
carry is placed as a new MSB.

The destination can be a byte or a word. It can be in a register or in a memory
location. The number of shifts are indicated by count. If number of shifts required is one
you can place 1 in the count position. If number of shifts are greater than 1 then shift
count must be loaded in CL register and CL must be placed in the count position in the
instruction.

Microprocessor 3-42 Instruction Set of 8086/8088 and ALP

Diagram shows RCR instruction for byte rotation.

B, Bg B By By B, By B cy
l—— 1 0 0 1 1 0 1 0 p— 1
N ANNANAN_S —]
111 lojol v 1] o] 1 0
Examples :

RCR CX, 1 ; Word in CX 1-bit right, LSB to CF, CF to MSB.
MOV CL, 04H ; Load number of bit positions to rotate in CL.
RCR AL, CL ; Rotate AL 4 bits right.

2.6 String Instructions
The 8086 instruction set provides following string instructions.
¢ REP/REPE/REPZ/REPNE/REPNZ
¢ MOVS/MOVSB/MOVSW
e LODS/LODSB/LODSW
e STOS/STOSB/STOSW
e CMPS/CMPSB/CMPSW
e SCAS/SCASB/SCASW

From the above six instructions we have already studied first four instructions in
section 3.4. the remaining two instructions are string compare instructions. The string
comparison instructions allow the programmer to test a section of memory against a
constant or against another section of memory.

CMPS/CMPSB/CMPSW Instruction :

A string is a series of the same type of data items in sequential memory locations. The
CMPS instruction can be used to compare a byte in one string with a byte in another
string or to compare a word in one string with a word in another string. SI is used to hold
the offset of a byte or word in the source string and DI is used to hold the offset of a byte
or a word in the other string. The comparison is done by subtracting the byte or word
pointed to by DI from the byte or word pointed to by SI. The AF, CF, OF, PF, SF, and ZF
flags are affected by the comparison, but neither operand is affected.

Microprocessor 3-43 Instruction Set of 8086/8088 and ALP

Examples :
; Point SI at source string, Point DI at
; destiration string
MOV SI, OFFSET F_STRING
MOV DI, OFFSET S_STRING
CLD ; DF cleared so SI and DI will
; autoincrement after compare
CMPS F_STRING, S_STRING ; The assembler uses names to determine whether
; strings were declared as type byte or as type
; word.
MOV CX, 100 ; Put number of string elements in CX, Point SI at
; source of string and DI at destination of string
MOV SI, OFFSET F_STRING
MOV DI, OFFSET S_STRING

STD ; DF set so SI and DI will autodecrement after
; compare
REPE CMPSB ; Repeat the comparison of string bytes until end

; of string or until compared bytes are not equal.
After the comparison SI and DI will be automatically incremented or decremented
according to direction flag to point to the next element in the two strings (if DF = 0, SI
and DI T otherwise |) CX functions as a counter which is decremented after each
comparison. This will go on until CX = 0.

SCAS/SCASB/SCASW Instruction :

SCAS compares a string byte with a byte in AL or a string word with word in AX.
The instruction affects the flags, but it does not change either the operand in AL (AX) or
the operand in the string. The string to be scanned must be in the extra segment and DI
must contain the offset of the byte or the word to be compared.

After the comparison DI will be automatically incremented or decremented according
to direction flag to point to the next element in the two strings (if DF =0, SI and DI T
otherwise |) CX functions as a counter which is decremented after each comparison. This
will go on until CX = 0. SCAS affects the AF, CF, OF, PF, SF and ZF flags.

Examples :
; Scan a text string of 80 characters
; for a carriage return
MOV AL, 0DH ; Byte to be scanned for into AL
MOV DI, OFFSET TEXT_STRING ; Offset of string to DI
MOV CX, 80 ; CX used as element counter

CLD ; Clear DF, so DI autoincrements

Microprocessor 3-4 Instruction Set of 8086/8088 and ALP

REPNE SCAS TEXT_STRING ; Compare byte in string with byte in
; AL.
SCASB says compare strings as bytes and SCASW says compare strings as words.

3.7 Program Control Transfer Instructions
These instructions are classified as :
e Unconditional transfer instructions - CALL, RET,]MP

e Conditional transfer instructions - J cond.

3.7.1 CALL and RET Instructions

Whenever we need to use a group of instructions several times throughout a program
there are two ways we can avoid having to write the group of instructions each time we
want to use them. One way is to write the group of instructions as a separate procedure.
We can then just CALL the procedure whenever we need to execute that group of
instructions. For calling the procedure we have to store the return address onto the stack.
This process takes some time. If the group of instructions is big enough then this overhead
time is negligible with respect to execution time. But if the group of instructions is too
short, the overhead time and execution time are comparable. In such cases, it is not
desirable to write procedures. For these cases, we can use macros. Macro is also a group of
instructions. Each time we “CALL” a macro in our program, the assembler will insert the
defined group of instructions in place of the “CALL”. An important point here is that the
assembler generates machine codes for the group of instructions each time macro is called.
So there is not overhead time involved in calling and returning from a procedure. The
disadvantage of macro is that it generates inline code each time when the macro is called
which takes more memory. In this section we discuss the procedures.

From the above discussions, we know that the procedure is a group of instructions
stored as a separate program in the memory and it is called from the main program
whenever required. The type of procedure depends on where the procedure is stored in
the memory. If it is in the same code segment where the main program is stored then it is
called near procedure otherwise it is referred to as far procedure. For near procedure
CALL instruction pushes only the IP register contents on the stack, since CS register
contents remains unchanged for main program and procedure. But for far procedures
CALL instruction pushes both IP and CS on the stack. Let us see the detail description and
examples of CALL instruction to enter the procedure and RET instruction to return from
the procedure.

Microprocessor 3-45 Instruction Set of 8086/8088 and ALP

CALL Instruction :

The CALL instruction is used to transfer execution to a subprogram or procedure.
There are two basic types of CALLs, near and far. A near CALL is a call to a procedure
which is in the same code segment as the CALL instruction. When the 8086 executes a
near CALL instruction it decrements the stack pointer by two and copies the offset of the
next instruction after the CALL on the stack. It loads IP with the cffset of the first
instruction of the procedure in same segment.

A far CALL is a call to a procedure which is in a different segment from that which
contains the CALL instruction. When the 8086 executes a far CALL it decrements the stack
pointer by two and copies the contents of the CS register to the stack. It then decrements
the stack pointer by two again and copies the offset of the instruction after the CALL to
the stack. Finally, it loads CS with the segment base of the segment which contains the
procedure and IP with the offset of the first instruction of the procedure in that segment.

Examples :
Direct within segment (near)
CALL PRO ; PRO is the name of the procedure.

; The assembler determines displacement of pro
; from the instruction after the CALL and codes
; this displacement in as part of the instruction.

Indirect within-segment (near)

CALL CX ; CX contains, the offset of the first instruction
; of the procedure. Replaces contents of IP with
; contents of register CX.

Indirect to another segment (far)

CALL DWORD PTR [BX] ; New values for CS and IP are fetched from four
; memory locations in DS. The new value for CS
; is fetched from [BX] and [BX + 1], the new IP
; is fetched from [BX + 2] and [BX + 3].

RET Instruction :

The RET instruction will return execution from a procedure to the next instruction
after the CALL instruction in the calling program. If the procedure is a near procedure (in
the same code segment as the CALL instruction), then the return will be done by replacing
the instruction pointer with a word from the top of the stack.

If the procedure is a far procedure (in a different code segment from the CALL
instruction which calls it), then the instruction pointer will be replaced by the word at the
top of the stack. The stack pointer will then be incremented by two. The code segment
register is then replaced with a word from the new top of the stack After the code
segment word is popped off the stack, the stack pointer is again incremented by two.
These words/word are the offset of the next instruction after the CALL. So 8086 will fetch
the next instruction after the CALL.

Microprocessor

3-48 Instruction Set of 8086/8088 and ALP

As explained earlier, a near type jump instruction can cause the next instruction to be
fetched from anywhere in the current code segment. To produce the new instruction fetch
address, this instruction adds a 16-bit signed displacement contained in the instruction to
the contents of the instruction pointer register. A 16-bit signed displacement means that
the jump can be to a location anywhere from +32,767 to —32,768 bytes from the current
instruction pointer location. A positive displacement usually means jump is “ahead” in the

program, and a negative displacement usua

A special case of the direct near jump instruction is direct
destination for the jump is within a displacemen

t range of +127 to

lly means jump is “backward” in the program.

short jump. If the
-128 bytes from the

current instruction pointer location, the destination can be reached with just an 8-bit

displacement.

3.7.3 Cond - Conditional Jump

Conditional jumps are always short jumps in the

8086. These instructions will cause a

jump to a label given in the instruction if the desired condition(s) occurs in the program

before the execution of the
~128 bytes to +127 bytes from the address of
instruction. If the jump is not taken, execution simply

instruction. The destination must be in the range of
the instruction after the conditional transfer
goes on to the next instruction.

Instruction Code

Description

Condition for jump

JAJJNBE
JAE/JNB
JB/UNAE/JC
JBE/JNA
JENZ
JG/INLE
JGE/JNL
JUINGE
JLE/UNG
JNC
JNE/UNZ
JNO
JNP/JPO
JNS

JO
JP/JPE
JS

JCXZ

Jump if above/Jump if not below or equal.
Jump if above or equal/Jump if not below.
Jump if below/Jump if not above or equal.
Jump if below or equal/Jump if not above.
Jump if equal/Jump if zero flag.

Jump if greater/Jump if not less than nor equal.

Jump if greater than or equal/Jump if not less than.

Jump if less than/Jump if not greater than or equal.

Jump if less than or equal/Jump if not greater
Jump if no carry

Jump if not equal/Jump if not zero

Jump if no overflow

Jump if not parity/Jump if parity odd

Jump if not sign or jump if positive

Jump if overflow flag = 1.

Jump if parity/Jump if parity even

Jump if sign flag = 1 or jump if negative

Jump if CX is zero

CF=0and ZF =0
CF=0and ZF = 1
CF=1and ZF =0
CF=1and ZF = 1
ZF =1
ZF=0and CF =0
SF=0
SF+ 0
ZF=10orSF =0
CF=0

ZF =0
OF =0
PF =0
SF=0
OF =1
PF =1
SF =1
CX =0

* aumbers.

Note : The terms greater and less are used to refer to the relationship of two signed

Microprocessor 3-49 Instruction Set of 8086/8088 and ALP

3.8 Iteration Control Instructions

These instructions are used to execute a series of instructions some number of times.
The number is specified in the CX register. The CX register is automatically decremented
by one, each time after execution of LOOP instruction. Until CX = 0, execution will jump
to a destination specified by a label in the instruction.

The destination address for the jump must be in the range of — 128 bytes to + 127 bytes
from the address of the instruction after the iteration control instruction. For
LOOPE/LOOPZ and LOOPNE/LOOPNZ instructions there is one more condition for exit
from loop, which is given below. If the loop is not taken, execution simply goes on to the
next instruction after the iteration control instruction.

Instruction Code Description Condition for Exit
1. LOOP Loop through a sequence of instructions CX=0
2. LOOPE/LOOPZ Loop through a sequence of instructions CX=0o0orZF =0
3. LOOPNE/LOOPNZ Loop through a sequence of instructions CX=0o0r2F =1

3.9 Processor Control Instructions

e STC
e CLC
e CMC
e SID
e CLD
e STI

e CLI

STC Instruction :

This instruction sets the carry flag, STC does not affect any other flag.
CLC Instruction :

This instruction resets the carry flag to zero. CLC does not affect any other flag.
CMC Instruction :

This instruction complements the carry flag. CMC does not affect any other flag.
STD Instruction :

This instruction is used to set the direction flag to one so that SI and/or DI can be
decremented automatically after execution of string instructions. STD does not affect any
other flag.

Microprocessor 3-50 Instruction Set of 8086/8088 and ALP

CLD Instruction :

This instruction is used to reset the direction flag to zero, so that SI and/or DI can be
incremented automatically after execution of string instructions. CLD does not affect any
other flag.

STl Instruction :

This instruction sets the interrupt flag to one. This enables INTR interrupt of the 8086.
STI does not affect any other flag.

CLI Instruction :
This instruction resets the interrupt flag to zero. Due to this 8086 will not respond to

an interrupt signal on its INTR input. CLI does not affect any other flag.

3.10 External Hardware Synchronization Instructions

e HLT

o WAIT
o ESC

» LOCK
¢ NOP

HLT Instruction :

The HLT instruction will cause the 8086 to stop fetching and executing instructions.
The 8086 will enter a halt state. The only ways to get the processor out of the halt state
are with an interrupt signal on the INTR pin, an interrupt signal on the NMI pin, or a
reset signal on the RESET input.

WAIT Instruction :

When this instruction executes, the 8086 enters an idle condition where it is doing no
processing. The 8086 will stay in this idle state until a signal is asserted on the 8086 TEST
input pin, or until a valid interrupt signal is received on the INTR or the NMI interrupt
input pins. If a valid interrupt occurs while the 8086 is in this idle state, the 8086 will
return to the idle state after the execution of interrupt service procedure. WAIT affects no
flags. The WAIT instruction is used to synchronize the 8086 with external hardware such
as the 8087 math coprocessor.

ESC Instruction :

This instruction is used to pass instructions to a coprocessor such as the 8087 math
coprocessor which shares the address and data bus with an 8086. Instructions for the
coprocessor are represented by a 6-bit code embedded in the escape instruction. When the
8086 fetches an ESC instruction, the coprocessor decodes the instruction and carries out the

Microprocessor 3-51 Instruction Set of 8086/8088 and ALP

action specified by the 6-bit code specified in the instruction. In most cases the 8086 treats
the ESC instruction as a NOP. In some cases the 8086 will access a data item in memory
for the coprocessor.

LOCK instruction :

In a multiprocessor system each microprocessor has its own local buses and memory.
The individual microprocessors are connected together by a system bus so that each can
access system resources such as disk drives or memory. Each microprocessor only takes
control of the system bus when it needs to access some system resources. The LOCK prefix
allows a microprocessor to make sure that another processor does not take control of the
system bus while it is in the middle of a critical instruction which uses the system bus.
The LOCK prefix is put in front of the critical instruction. When an instruction with a
LOCK prefix executes, the 8086 will assert its bus lock signal output. This signal is
connected to an external bus controller device which then prevents any other processor
from taking over the system bus. LOCK affects no flags.

Examples :
LOCK XCHG SEMAPHORE, AL ; The XCHG instruction requires two bus
; accesses. ,
; The LOCK prefix prevents another processor
; from taking control of the system bus between
; the two accesses.
NOP Instruction :
At the time of execution of NOP instruction, no operation is performed except fetch
and decode. It takes three clock cycles to execute the instruction. NOP instruction does not

affect any flag. This instruction is used to fill in time delays or to delete and insert
instructions in the program while trouble shooting.

3.11 Interrupt Instructions

INT Instruction : INT Type
This instruction causes the 8086 to call a far procedure. The term type in the

instruction refers to a number between 0-255 which identifies the intertupt. The address of
the procedure is taken from the memory whose address is four times the type number.

INTO Instruction :

If the overflow flag is set, this instruction will cause the 8086 to do an indirect far cnll
to a procedure you write to handle overflow condition. To do call the 8086 will read a
new value for IP from address 00010H and a new value of CS from address 00012H.

Microprocessor 3-52 Instruction Set of 8086/8088 and ALP

IRET Instruction :

The IRET instruction is used at the end of the interrupt service routine to return
execution to the interrupted program. The 8086 copies return address from stack into IP
and CS registers and the stored value of flags back to the flag register.

Note : The RET instruction does not copy the flags from the stack back to the flag
register.

3.12 Sign Extension Instructions
CBW : Convert Signed Byte to Signed Word

This instruction copies the sign of a byte in AL to all the bits in AH. CBW does not
affect any flag.

Example :
; AX = 0000 0000 1403 =010
CBW ; convert signed byte in AL to signed word in AX
; Result : AX = 1111 1111 1001 1010
CWD : Convert Signed Word to Signed Double Word.

This instruction copies the sign bit of a word in AX to all the bits of the DX register
CWD does not affect any flag.

Example :
; DX = 0000 0000 0000 0000
; AX = 1001 0000 1001 0001
CWD ; Convert signed word in AX to signed

; doubleword in DX : AX
; Result : DX = 1111 1111 1111 1111
AX = 1001 0000 1001 0001

3.13 Assembler Directives

There are some instructions ir the assembly language program which are not a part of
processor instruction set. These ins.-uctions are instructions to the assembler, linker, and
loader. These are referred to as ps udo-operations or as assembler directives. The
assembler directives enable us to control he way in which a program assembles and lists.
They act during the assembly of a progran and do not generate any executable machine
code.

There are many specialized assembler directives. Let us see the commonly used
assembler directive in 8086 assembly lanquage programming.

Microprocessor 3-53 Instruction Set of 8086/8088 and ALP

ALIGN : The align directive forces the assembler to align the next segment at an
address divisible by specified divisor. The general format for this directive is as shown
below.

ALIGN number
where number can be 2, 4, 8 or 16.

Example : ALIGN 8 ; This forces the assembler to align the next segment

; at an address that is divisible by 8. The assembler fills
; the unused bytes with 0 for data and NOP instructions
; for code.

Usually ALIGN 2 directive is used to start the data segment on a word boundary and
ALIGN 4 directive is used to start the data segment on a double word boundary.

ASSUME : The 8086, at any time, can directly address four physical segments which
include a code segment, a data segment, a stack segment and an extra segment. The 8086
may contain a number of logical segments. The ASSUME directive assigns a logical
segment to a physical segment at any given time. That is, the ASSUME directive tells the
assembler what addresses will be in the segment registers at execution time.

Example : ASSUME CS : code, DS : Data, SS : stack.

.CODE : This directive provides shortcut in definition of the code segment. General
format for this directive is as shown below.

.code [name]

The name is optional. It is basically specified to distinguish different code segments
when there are multiple code segments in the program.

.DATA : This directive provides shortcut in definition of the data segment.

DB, DW, DD, DQ, and DT : These directives are used to define different types of
variables, or to set aside one or more storage locations of corresponding data type in
memory. Their definitions are as follows :

DB - Define Byte

DW - Define Word

DD - Define Doubleword
DQ - Define Quadword
DT - Define Ten Bytes

Example :
AMOUNT DB 10H, 20H, 30H, 40H ; Declare array of 4 bytes named
; AMOUNT
MES DB 'WELCOME' ; Declare array of 7 bytes and

; initialize with ASCII codes for letters in
; WELCOME.

Microprocessor 3-54 Instruction Set of 8086/8088 and ALP

DUP : The DUP directive can be used to initialize several locations and to assign
values to these locations.

Format : Name Data_Type Num DUP (value)

Example :
TABLE DW 10 DUP (0) ; Reserve an array of 10
; words of memory and initialize all 10
; words with 0. Array is named TABLE.
END : The END directive is put after the last statement of a program to tell the
assembler that this is the end of the program module. The assembler ignores any
statement after an END directive.

EQU : The EQU directive is used to redefine a data name or variable with another
data name, variable, or immediate value. The directive should be defined in a program
before it is referenced.

Formats :
Numeric Equate : name EQU expression
String Equate : name EQU <string>
Example : PORT EQU 80 ; Numeric value
NUM EQU <‘Enter the first number >
MES DB NUM ; Replace with string

EVEN : EVEN tells the assembler to advance its location counter if necessary so that
the next defined data item or label is aligned on an even storage boundary. This feature
makes processing more efficient on processors that access 16 or 32 bits at a time.

Example :
EVEN LOOKUP DW 10 DUP (0) ; Declares the array of ten words
; starting from even address.

EXTRN : Tiie EXTRN directive is used to inform assembler that the names or labels
following the directive are in some other assembly module. For example, if you want to
call a procedure which is in a program module assembled at a different time, you must
tell the assembler that the procedure is EXTRN. The assembler will then put information in
the object code file so that the linker can connect the two modules together. For a
reference it is necessary to specify whether the label is near or far.

Note : Names and labels referred to as external in one module must be declared
public.

Example :
CALLING PROGRAM CALLED PROGRAM
DATA SEGMENT EXTRN VAR : FAR
PUBLIC VAR DATA SEGMENT

VAR DW

Microprocessor 3-55 Instruction Set of 8086/8088 and ALP

.. MOV AX, VAL
DATA ENDS -

. DATA ENDS
GROUP : A program may contain several segments of the same type (code, data, or

stack). The purpose of the GROUP is to collect them all under one name, so that they
reside within one segment, usually a data segment.

Format : Name GROUP Seg-name, . . ., Seg-name.

Example :
SEG GROUP SEG1, SEG2 Srin | -
SEG1 SEGMENT PARA ‘DATA’ riivas institute of Technology
ASSUME DS : SEG AC N SR 8R
Nafp!
e “ali MO sty
SEG1 ENDS s

SEG2 SEGMENT PARA ‘DATA’
ASSUME DS : SEG

SEG2 ENDS
LABEL : Assembler uses a location counter to keep track of how many bytes it is
from the start of a segment at any time. The LABEL directive is used to give a name to
the current value in the location counter. The label directive can be used to specify
destination for jump or call instruction or to specify reference to a data item. When label
is used as destination for a jump or a call, then the label must be specified as type near or

as type far. When label is used to refer a data item it must be specified as type byte, type
word, or type double word.

Example :
NEXT LABEL FAR ; Can jump to NEXT from
; another segment
NEXT : MOV AX, BX ; Cannot do far jump directly to a label

, with a colon.
; Initialization of stack pointer using
; label directive

LENGTH : It is an operator which tells the assembler to determine the number of
elements in some named data item such as a string or array.

Example :
MOV BX, LENGTH STRING1 ; Loads the Length of string in BX
MACRO and ENDM : The macros in the programs can be defined by MACRO

directive. ENDM directive is used along with the MACRO directive. ENDM defines the
end of the macro.

Microprocessor - 3-56 Instruction Set of 8086/8088 and ALP

MODEL : It is available in MASM version 5.0 and above. This directive provides
shortcuts in defining segments. It is initializes memory model before defining any segment.
The memory model can be SMALL, MEDIUM, COMPACT or LARGE. We can choose the
memory model based on our requirement by referring following table.

Model Code segments Data segments
Small One One
Medium Multiple One
Compact One Muitiple
Large Multiple Multiple
Table 3.5

NAME : The name directive is used at the start of a source program to give specific
names to each assembly module.

OFFSET : It is an operator which tells the assembler to determine the offset or
displacement of a named data item (variable) from the start of the segment which contains
it.

Example :

MOV AX, OFFSET MES1 ; Loads the offset of variable, MES1 in

; AX register

ORG : The assembler uses a location counter to account for its relative position in a
data or code segment.

Format: ORG expression
Example : ORG 1000H, Set the location counter to 1000H

PTR : PTR is used to assign a specific type to a variable or to a label. It is also used to
override the declared type of a variable.

Example : WORD_LEN DW

MOV BL, BYTE PTR WORD_LEN ; Byte accesses byte from word

PAGE : The PAGE directive helps to control the format of a listing of an assembled
program. At the start of a program the PAGE directive specifies the maximum number of
lines to list on a page and the maximum number of characters on a line.

Format : PAGE [length], [width]
Example : PAGE 52, 132 ; 52 lines per page and 132 characters per line.

Microprocessor 3-57 Instruction Set of 8086/8088 and ALP

PROC and ENDP :

PROC : The procedures in the programs can be defined by PROC directive. The
procedure name must be present, must be unique, and must follow naming conventions
for the language. After the PROC directive the term NEAR or FAR are issued to specify
the type of the procedure.

Example : FACT PROC FAR ; Identifies the start of a procedure named FACT and tells
the assembler that the procedure is far (in a segment with a different name from that
which contains the instruction which calls the procedure)

ENDP : ENDP directive is used along with the PROC directive. ENDP defines the end
of the procedure.

PUBLIC : Large programs are usually written as several separate modules. Each
module is individually assembled, tested and debugged. When all the modules are
working correctly, their object code files are linked together to form the complete program.
In order for the modules to link together correctly, any variable name or label referred to
in other modules must be declared public in the module where it is defined. The PUBLIC
directive is ued to tell the assembler that a specified name or label will be accessed from
other modules.

Format : PUBLIC Symbol [. . . .]
Example : PUBLIC SETPT ; Makes SETPT available for other modules.

SEGMENT and ENDS : An assembly program in .EXE format consists of one or more
segments. The start of these segments are defined by SEGMENT directive and the ENDS

statement indicates the end of the segment.
Format: name SEGMENT [options] ; Begin segment

name ENDS ; End segment
Example : CODE SEGMENT

CODE ENDS

SHORT : A short is a operator. It is used to tell the assembler that only 1 byte
displacement is needed to code a jump instruction. If the jump destination is after the
jump instruction in the program, the assembler will automatically reserve 2 bytes for the
displacement. Using the short operator saves 1 byte of memory by telling the assembler
that it only needs to reserve 1 byte for this particular jump. The short operator should be
used only when the destination is in the range of -128 bytes to +127 bytes from the
address of the instructions after the jump.

Microprocessor 3-58 Instruction Set of 8086/8088 and ALP

Example : JMP SHORT NEAR_LABEL

.STACK : This directive provides shortcut in definition of the stack segment. General
format for this directive is as shown below.
.stack [size]
The default size is 1024 bytes.

Example : STACK 100 ;This reserves 100 bytes for the stack operation.

When stack is not used in the program .stack command can be omitted. This will
reserve in the warning message “no stack segment” after linking the program. This
warning may be ignored.

TITLE : The TITLE directive help to control the format of a listing of an assembled
program. TITLE directive causes a title for a program to print on line 2 of each page of the
program listing. Maximum 60 characters are allowed as title.

Format : TITLE text
Example : TITLE Program to find maximum number

TYPE : It is an operator which tells assembler to determine the type of specified
variable. Assembler determines the type of specified variable in number of bytes. For byte
type variable the assembler gives a value of 1. For word type variable the assembler gives
a value of 2 and for double word type variable the assembler gives a value of 4.

3.13.1 Summary of Assembler Directives

Directive Action
ALIGN aligns next variable or instruction to byte which is multiple of operand
ASSUME selects segment register(s) to be the default for all symbol in segment(s)
COMMENT indicates a comment
DB allocates and optionally initializes bytes of storage
bw allocates and optionally initializes words of storage
DD allocates and optionally initializes doublewords of storage
DQ allocates and optionally initializes quadwords of storage
DT allocates and optionally initializes 10 byte-long storage units
END terminates assembly; optionally indicates program entry point
ENDM terminates a macro definition
ENDP marks end of procedure definition
ENDS marks end of segment or structure
EQU assigns expression to name
EVEN aligns next variable or instruction to even byte
EXITM terminates macro expansion

Microprocessor 3-59 Instruction Set of 8086/3088 and ALP

EXTRN indicates externally defined symbols
LABEL creates a new label with specified type and current location counter
LOCAL declares local variables in macro definition
MACRO starts macro definition
.MODEL specifies mode for assembling the program.
ORG sets location counter to argument
PAGE sets length and width of program listing; generates page break
PROC starts procedure definition
PTR assigns a specific type to a variable or to a label
PUBLIC identifies symbols to be visible outside module
TITLE defines the program listing titie
Table 3.6

3.13.2 Variables, Suffix and Operators

Variable : A variable is an identifier that is associated with the first byte of data item. In
assembly language statement : COUNT DB 20H, COUNT is a variable.

Example : Array DB 10, 20, 30, 40, 50

Here, array is the variable which is associated with the first byte of
the data item, i.e. 10.

Suffix : In assembly language programming base of the number of indicated by a suffix
as follows :

e B- Binary
e D - Decimal
® O - Octal

* H - Hexadecimal
The default is decimal. The first digit in a hexadecimal number must be
0 through 9; therefore, if the most significant digit is a letter (A-F), then it must be
prefixed with a 0.
Examples : 1010 B = 1010,

2967 D = 2967 = 2967,
3F2AH = 2F2A,
0B129H = B129,,
Operators : Arithmetic operators : “+”, “—”, “*” and /",
Logical operators : “AND”, “OR”, “NOT, and “XOR”.
Logical operators are specially used for binary operands.

Microprocessor 3-60 Instruction Set of 8086/8088 and ALP

3.13.3 Accessing a Procedure and Data from another Assembly Module

As mentioned earlier, usually a large program is divided into a series of modules.
Each module is individually written, assembled, and tested. The object code files for the
modules are then linked together to generate a linked file or executable file.

In order for a linker to be able to access data or a procedure in another assembly
module correctly we have to use two assembly language directives : PUBLIC and EXTRN.

In the module where a variable or procedure is declared we must use the PUBLIC
directive to let the linker know that the variable or procedure can be accessed from other
modules.

In a module which calls a procedure or accesses a variable in another module, we
must use the EXTRN directive to let the assembler know that the procedure or variable is
not in this module but it has to access from another module. The EXTRN statement also
gives the linker some needed information about the procedure. For example : EXTRN
ROUTINE : FAR, TOKEN : BYTE tells the linker that ROUTINE is a FAR procedure and
TOKEN is a variable of type byte.

mmp Example 3.1 : “Filel.asm” contains a program segment which calls a subroutine
(procedure) in "File2.asm”. Give the necessary declarations in Filel.asm and "File2 asm” (to
make the subroutine of file2.asm available to filel.asm which is not locally available) and the
assembling and linking to obtain the executable file.

Solution : Filel.asm File2.asm
EXTRN ROUTINE : FAR PUBLIC ROUTINE PROC FAR

ROUTINE ENDP

3.14 Assembly Language Programming

A program is a set of instructions arranged in the specific sequence to do the specific
task. It tells the microprocessor what it has to do. The process of writing the set of
instructions which tells the microprocessor what to do is called “Programming”. In other
words, we can say that programming is the process of telling the processor exactly how to
solve a problem. To do this, the programmer must “speak” to the processor in a language
which processor can understand.

Steps Involved in Programming

e Specifying the problem : The first step in the programming is to find out which
task is to be performed. This is called specifying the problem. If the programmer
does not understand what is to be done, the programming process cannot begin.

e Designing the problem-solution : During this process, the exact step by step
process that is to be followed (program logic) is developed and written down.

Microprocessor 3-61 Instruction Set of 8086/8088 and ALP

* Coding : Once the program is specified and designed, it can be implemented.
Implementation begins with the process of coding the program. Coding the
program means to tell the processor the exact step by step process in its
language. Each processor has a set of instructions. Programmer has to choose
appropriate instructions from the instruction set to build the program.

¢ Debugging : Once the program or a part of program is coded, the next step is
debugging the code. Debugging is the process of testing the code to see if it does
the given task. If program is not working properly, debugging process helps in
finding and correcting errors.

To write a program, programmer should know :
e How to develop program logic?
e How to tell the program to the processor?
e How to code the program?

¢ How to test the program?

Flow Chart

To develop the programming logic programmer has to write down various actions
which are to be performed in proper sequence. The flow chart is a graphical tool that
allows programmer to represent various actions which are to be performed. The graphical
representation is very useful for clear understanding of the programming logic.

The Fig. 3.21 shows the graphic symbols used in the flow chart.

CD Oval : It indicates start or stop operation.
Arrow : It indicates flow with direction.

Parallelogram : It indicates input/output

Diamond : It indicates decision making

operation.

Double sided rectangle : It indicates execution of

pre-defined process (subroutine).

——
operation.
Rectangle : It indicates process operation.

Circle with alphabet : It indicates continuation.
A: Any alphabet
@ The Fig. 3.22 shows sample flow chart.

Fig. 3.21 Graphic symbols
used in flow chart

Microprocessor 3-62 Instruction Set of 8086/8088 and ALP

Start

Input process
parameters

Call subroutine

Process

/ Display resuitf/

Stop
Fig. 3.22 Sample flowchart

3.14.1 Assembly Language Programs

A program which has simply a sequence of the binary codes for the instructions is
called machine level language program. This binary form of the program is referred to as
machine language because it is the form required by the machine. However, to write a
program in machine language, programmer has to memorize the thousands of binary
instruction codes for a processor. This task is difficult and error prone.

To make programming easier, usually programmers write programs in assembly
language. They then translate the assembly language program to machine language so that
it can be loaded into memory and executed. Assembly language uses two, three or four
letter words to represent each instruction types. These words are referred to as
mnemonics. The letters in an assembly language mnemonic are usually initials or a
shortened form of the English word(s) for the operation performed by the instruction. For
example, the mnemonic for addition is ADD, the mnemonic for logic AND operation is
AND, and the mnemonic for the instruction for copy data from one location to another is
MOV. Therefore, the meaning expressed by mnemonics help us to remember the operation
performed by the instruction.

Assembly language statements are usually written in a standard form and assembly
language has its own unique syntactical structure, such as requiring upper case or lower
case, or requiring colons after label definitions. Here we discuss the common features that
assembler shares.

Microprocessor 3-63 Instruction Set of 8086/8088 and ALP

The assembly text is usually divided into fields, separated by spaces and tabs. A
format for a typical line from assembly language program can be given as

Label : Mnemonic Operandl, Operand2 ; Comment

The first field, which is optional, is the label field, used to specify symbolic labels. A
label is an identifier that is assigned to the address of the first byte of the instruction in
which it appears. As mentioned earlier, the presence of a label is optional, but if present,
the label provides a symbolic name that can be used in branch instructions to branch to
the instruction.

The second field is mnemonic, which is compulsory. All instructions must contain a
mnemonic. The third and following fields are operands. The presence of the operands
depends on the instruction. Some instructions have no operands, some have one, and some
have two. If there are two operands, they are separated by a comma.

The last field is a comment field. It begins with a delimiter such as the semicolon and
continues to the end of the line. The comments are for our benefits, they tell us what the
program is trying to accomplish. Fig. 3.23 shows a typical 8086 assembly language
instruction.

Mnemonic Source operand
AGAIN : ADD AX, price [BX] ; Add price of item to AX
Label Destination operand Comment

Fig. 3.23 Typical assembly language instruction

The Table 3.7 shows the comparison between machine level and assembly languages.

Sr. No. Machine Language Assembly Language

1. Language consists of binary codes Language consists of mnemonics which
which specify the operation. specify the operation.

2. Processor dependent and hence Processor dependent hence requires
requires knowledge of internal knowledge of internal details of
details of processor to write a processor to write a program.
program.

3. Programs require less memory. Programs require less memory.

4, Programs have less execution Programs have less execution time.
time.

5. Program development is difficuit. Program development is simpler than

machine language.

6. It is not user friendly. It is less user friendly.

Table 3.7 Comparison between various microcomputer languages

Microprocessor 3-64 Instruction Set of 8086/8088 and ALP

3.14.2 Assembly Language Programming Tips

We know that a program is a set of instructions arranged in the specific sequence to
perform the specific task. For writing a program for specific task, programmer may find a
number of solutions (instruction sequences). A skilled programmer has to choose an
optimum solution out of them for that specific task. The technique of choosing an
optimum solution is an art and we can name this as an art of assembly language
programming. In this section we will see some tips regarding this with the help of
examples.

What is an optimum solution ? : The optimum solution is the solution which
takes minimum memory space for the program and minimum time for the
execution of a task. When we say memory space for the program we consider
space for program storage (program length), space for data storage and space
used by the stack.

Use of proper instructions : Many times we come across the situation where
more than one set of instructions are available to perform particular function. For
example, if the function is add 01 in the BX register of 8086 we have two
options : ADD BX, 0001H or INC BX. In such situations we must check the space
and time for both the options and then select the option which requires less
space and time. Let us see the space and time required for these two
instructions. The instruction ADD BX, 0001H is 4 byte instruction and requires 4
clock cycles to execute. On the other hand, INC BX is a single byte instruction
and requires 2 cycles for the execution. That is instruction INC BX requires less
memory space and execution time than instruction ADD BX, 0001H. Therefore,
programmer must use INC BX instructior: in such situation.

Use of advanced instructions : We must optimally utilize the processor
capabilities. For example, when it is necessary to write a program to move a
block of data from the source to destination location, a programmer may
initialize a pointer to indicate source location, a pointer to indicate destination
location, a counter to count the number of data elements to be transferred. After
transfer of one data element from source to destination location programmer
may use INC, DEC and JNZ instructions to increment source and destination
pointers, decrement counter and to check whether all data elements are
transferred or not, respectively.

The same task can be implemented by MOVS instruction supported by 8086. Let us see
the part listing of the program with both the approaches and then we compare them.

Microprocessor 3-65 Instruction Set of 8086/8088 and ALP

1. Part listing of prcgram with general approach

MOV SI, 1000H ; Initialise source pointer
MOV DI, 2000H 7 Initialise destination pointer
MOV CX, 0020H ; Initialise counter

BACK : MOV AX, [SI] ; Get data element frcm source
MOV [DI}, AX ; Store it at destination
INC SI ; Increment source pointer
INC DI i Increment destination pointer
DEC CX ; Decrement counter
JNZ BACK ; If count is not =zero, repeat

2. Part listing of program with MOVS instruction

MOV SI, 1000H ; Initialise source pointer
MOV DI, 2000H ; Initialise destination pointer
MOV CX, 0020H ; Initialise counter
CLD ; Clear direction flag
REP MOVSB ; Move the entire block

Looking at the two programs we can casily notice that the MOVSB instruction needs
neither counter decrement and jump back nor pointer update instructions. All these
functions are done automatically. Because MOVSB instruction copies multiple bytes from
source to destination. After each byte transfer it automatically increments SI and DI
pointers by 1 (since DF is 0) and decrements count in CX register and it repeats this
process until CX = 0.

In the second approach, we require less number of instructions and memory space. As
number of instructions are less, fetching time required for the instructions is also saved
and hence we can say that the second approach requires less memory space and less time
to execute the same task. So skill programmer uses second approach.

* Use of proper addressing modes : We know that the different ways that a
processor can access data are referred to as addressing modes. If we compare the
various addressing modes regarding access time required for accessing operands,
we can easily make out that the register addressing takes less time to access
operand than the index and indirect addressing modes. It is obvious that when
operands are available in CPU registers they are immediately available for
operation; however when they are in memory we have to fetch them from
memory. Fetching operands takes more time. So it is advisible to store most of
the operands in the CPU registers. We know that CPU registers are limited in
numbers. Therefore, when they are not enough then only we should use memory
space for storing the operands.

* Prepare documentation : Program must provide enough information so that
other users can utilize the program module without having to examine its
internal structure. So along with program it is advised to give the following
information.

Microprocessor 3-66 Instruction Set of 8086/8088 and ALP

1. Description of the purpose of the program module.
2. In case of subroutine program list of passing parameters and return value.
3. Register and memory locations used.
4. Proper comments for each instruction used.
3.14.3 Programming with an Assembler

Let us see what are the steps involved in developing and executing assembly language
programs. Fig. 3.24 shows these steps. The left side of the figure shows the time period, at
which each step in the overall process takes place.

Assembly language
Time period program text written e = = - = w - ——— — — ——— - ———
in any text editor

Program listing

Error messages |- -

Assemble time ————no—— (Assembler

Object code

module in binary Other object code

modules from library

Link time —————— (_Linker

1010 .. 0010
' 1011 0110
0010 1010
[Linked modules I oo1 .. omt| Processor
101 110 main
1100 . 00n
0011 1100 memory
1010 .. 0111

Load tim¢ ——m8M8M8™——— (Loader) 0001 1011
CPU

Execution time

Fig. 3.24 Steps in program development and execution

The first step in the development process is to write an assembly language program.
The assembly language program can be written with an ordinary text editor such as word
star, edit and so on. The assembly language program text is an input to the assembler. The
assembler translates assembly language statements to their binary equivalents, usually
known as object code. Time required to translate assembly code to object code is called
assemble time. During assembling process assembler checks for syntax errors and displays
them before giving object code module.

The object code module contains the information about where the program or module
to be loaded in memory. If the object code module is to be linked with other separately
assembled modules then it contains additional linkage information. At link time, separately
assembled modules are combined into one single load module, by the linker. The linker
also adds any required initialization or finalization code to allow the operating system to

Microprocessor 3-67 Instruction Set of 8086/8088 and ALP

start the program running and to return control to the operating system after the program
has completed. Most linkers allow assembly language modules to be linked with object
code modules compiled from high-level languages as well. This allows the programmer to
insert a time-critical assembly language routines, library modules into a program.

At load time, the program loader copies the program into the computer’s main
memory, and at execution time, program execution begins.

3.14.3.1 Assembling Process

As mentioned earlier, assembler translates a source file that was created using the
editor into machine language such as binary or object code. The assembler reads the
source file of our program from the disk where we saved it after editing. An assembler
usually reads our source file more than once.

The assembler generates two files on the floppy or hard during these two passes. The
first file is called the object file. The object file contains the binary codes for the
instructions and information about the addresses of the instructions. The second file
generated by the assembler is called assembler list file. This file contains the assembly
language statements, the binary code for each instruction, and the offset for each
instruction.

In the first pass, the assembler performs the following operations :
1. Reading the source program instructions.

2. Creating a symbol table in which all symbols used in the program, together with
their attributes, are stored.

3. Replacing all mnemonic codes by their binary codes.
4. Detecting any syntax errors in the source program.
5. Assigning relative addresses to instructions and data.

On a second pass through the source program, the assembler extracts the symbol from
the operand field and searches for it in the symbol table. If the symbol does not appear in
the table, the corresponding statement is obviously erroneous. If the symbol does appear in
the table, the symbol is replaced by its address or value.

We can use a suitable Editor to type .asm file. We can convert object file from .asm file
using popular assemblers MASM (Microsoft macro assembler) or TASM (Turbo assembler).
The command on command prompt performing this operation is as given below

C:\ MASM\ biN\> MASM myprog.asm;

where myprog.asm is name of the .asm file which is to be converted to .obj file.

Microprocessor 3-68 Instruction Set of 8086/8088 and ALP

3.14.3.2 Linking Process

A linker is a program used to join together several object files into one large object file.
When writing large programs, it is usually much more efficient to divide the large
program into smaller modules. Each module can be individually written, tested and
debugged. When all the modules work, they can be linked together to form a large
functioning program.

The linker produces a link file which contains the binary codes for all the combined
modules. The linker also produces a link map which contains the address information
about the link files. The linker, however, does not assign absolute addresses to the
program, it only assigns relative addresses starting from zero. This form of the program is
said to be relocatable, because it can be put anywhere in memory to be run.

The command on command prompt for converting .obj file to .EXE file is as given
below :

C : \ MASM \ BIN \ > LINK myprog.obj;

3.14.3.3 Debugging Process

A debugger is a program which allows us to load our object code program into system
memory, execute the program, and debug it.

How does a debugger help in debugging a program ?

1. The debugger allows us to look at the contents of registers and memory locations
after our program runs.

2. 1t allows us to change the contents of register and memory locations and rerun the
program.

3. Some debugger allows us to stop execution after each instruction so we can check
or alter memory and register contents.

4. A debugger also allows us to set a breakout at any point in our program. When we
run a program, the system will execute instructions up to this breakpoint and stop.
We can then examine register and memory contents to see if the results are correct
at that point. If the results are correct, we can move the break point to a later
point 1n our program. If results are not correct, we can check the program up to
that point to find out why they are not correct.

In short, debugger tools can help us to isolate problems in our program.

Microprocessor

3-69 Instruction Set of 8086/8088 and ALP

Debug Commands

Command Command Syntax and Description
Assembler — A [address]
A command allows you to enter the mnemonic, or human-readable, instructions
directly.
Compare — C range address
C command compares two memory blocks.
Dump — D [range]
D command displays a portion of memory in hex and ASCII.
Enter — E address [list]
E command places individual bytes in memory.
Fill - F range list
F command fills a range of memory with a single value or a list of values.
GO — G [= address] [addresses]
G command execute the program in memory.
Hex — H value 1 value 2
H command performs addition and subtraction on two hexadecimal numbers.
Load — L [address] [drive] [first sector] [number]
L command loads a file (or disk sectors) into memory.
Move - M range address
M command copies a block of data from one memory location to another.
Name N [pathname] [arglist]
N command initializes a filename (and file control block) in memory before using
load or write commands. '
4
Proceed — P [= address] [number]
P command traces the program without entering the subroutine or interrupt. If
such instruction appears in the program it executes entire subroutine or interrupt
routine and immediately proceeds to next instruciton in the sequence.
Quit -Q
Q command quits from debug.
Register - R [register]
R command displays the register contents on the screen
Search - S range list
S command search a range of addresses for a list of bytes or a string.
Trace —~ T [= address] [value]
T command execute one or more instructions from the current CS : IP location or
optional address, if specified.
Unassemble — U [range]
U command translates memory into assembly language mnemonics.
Write ~ W [address] [drive] [first sector] [number]
W command write a block of memory to a file or to individual disk sectors.

(See detail description of debug command in Appendix C.)

Microprocessor 3-70 Instruction Set of 8086/8088 and ALP

3.15 Assembly Language Example Programs
Program 1 : (Softcopy of this program, Plasm is available at www.vtubooks.com)

NAME Addition
PAGE 52,80
TITLE 8086 assembly language program to add two numbers.
.model small
.stack 100
.data
Nol DB 63H ; First number storage
No?2 DB 2EH ; Second number storage
Result DW ? ; Double byte reserved for result
.code
START: MOV AX, @data ; [Initialises
MOV DS, AX ; data segment]
MOV AL, NO1 ; Get first number in AL
ADD AL,NO2 ; Add second to it
ADC AH,00H ; Put carry in AH
MOV Result,AX ; Copy result to memory
END START
Program 2 : (Softcopy of this program, P2.asm is available at www.vtubooks.com)
NAME Average
PAGE 52,80
TITLE 8086 ALP to find average of two numbers.
.model small
.stack 100
.data
Nol DB 63H ; First number storage
No2 DB 2EH ; Second number storage
Avg DB ? ; Average of two numbers
.code
START: MOV AX, @data ; [Initialises
MOV DS, AX ; data segment]
MOV AL, NO1l ; Get first number in AL
ADD AL,NO2 ; Add second to it
ADC AH,00H ; Put carry in AH
SAR AX,1 ; Divide sum by 2
MOV Avg,AL ; Copy result to memory
END START
Program 3 : (Softcopy of this program, P3.asm is available at www.vtubooks.com)
NAME Maximum number
PAGE 52,80
TITLE 8086 ALP to find maximum in the array.
.model small
.stack 1C0

.data

Microprocessor

3-71 Instruction Set of 8086/8088 and ALP

ARRAY
MAX DB 0
.code
START: MOV AX, @data
MOV DS, AX
XOR DI, DI
MOV CL, 10
LEA BX,ARRAY
MOV AL, MAX
BACK: CMP AL, [BX+DI]
JNC SKIP
MOV DL, [BX+DI]
MOV AL, DL
SKIP: INC DI
DEC CL
JNZ BACK
MOV MAX, AL
END START
Program 4 :
NAME Find number
PAGE 52,80
TITLE
.model small
.stack 100
.data

DB 63H,32H, 45H,75H,12H,42H,09H, 14H, 56H, 38H

;

’

Array of ten numbers
Maximum number

[Initialises
data segment]
Initialise pointer
Initialise counter
Initialise base pointer for array
Get maximum number
Compare number with maximum

[If number > MAX
MAX = number]
Increment pointer
Decrement counter

IF count = 0 stop
otherwise go BACK
Store maximum number

(Softcopy of this program, P4.asm is available at www.vtubooks.com)

8086 ALP to search a number in the array.

ARRAY DB 63H,32H, 45H, 75H 12H,42H,09H, 14H, 56H, 38H

SER_NO DB 09H

SER_POS DB ?
.code
START: MOV AX, @data

MOV DS, AX
MOV ES, AX

MOV CX, 000AH
LEA DI,ARRAY
MOV AL, SER_NO

CLD

REPNE SCAS ARRAY

MOV AL, 10
SUB AL,CL

MOV SER_POS, AL

END START

Array of ten numbers
Number to be searched
Position of the searched number

[Initialises
data segment]

Initialise counter

Initialise base pointer for array

Get the number to be searched in AL

Clear direction flag

Repeat until match occurs or CX = 0
[Find the searched number position
in the array if SER_POS is 0
number is not in array; otherwise
SER_POS gives the position of
number in the array]

Program 5 : (Softcopy of this program, P5.asm is available at www.vtubooks.com)

NAME
PAGE

Array sum

52,80

Microprocessor 3-72 Instruction Set of 8086/8088 and ALP

TITLE 8086 ALP to find sum of numbers in the array.
.model small
.data
ARRAY DB 12H, 24H,26H, 63H, 25H, 86H, 2FH, 33H, 10H, 35H
SUM DW O
.code
START: MOV AX, @data ; [Initialise
MOV DS, AX ; data segment]
MOV CL, 10 ; Initialise counter
XOR DI, DI ; Initialise pointer
LEA BX, ARRAY ; Initialise array base pointer
BACK: MOV AL, [BX+DI] ; Get the number
MOV AH, 00H ; Make higher byte 0Ch
ADD SUM, AX ; SUM = SUM + number
INC DI ; Increment pointer
DEC CL ; Decrement counter
JNZ BACK ; If not 0 go to back
END START

Program 6 : (Softcopy of this program, P6.asm is available at www.vtubooks.com)

NAME

PAGE

TITLE
.model small
.STACK 100
.data

ARRAY

ARR _ODD

ARR_EVEN

.code
START: MOV
MOV
MOV
XOR
XOR
LEA
MOV
AND
JZ

LEA
MOV
MOV
INC
JMP
LEA
MOV
MOV
INC
INC
DEC

BACK:

NEXT:

SKIP:

Separate even-odd
52,80
Separate even and odd numbers in the array.

DB 12H,23H,26H, 63H,25H, 86H, 2FH, 33H, 10H, 35H

DB 10 DUP (?)
DB 10 DUP (?)
AX, @data ; [Initialise
DS, AX ; data segment]
CL,10 ; Initialise counter
DI, DI ; Initialise odd pointer
SI,SsI ; Initialise even_pointer
BP, ARRAY ; Initialise array base pointer
AL, DS: [BP] ; Get the numprer
AlL,O1lH ; Mask all bits except LSB
NEXT ; If LSB = 0 go to next
BX,ARR_ODD ; [Otherwise
AH, [BX+DI} ; Initialise pcinter to odd array
ARR _ODD, AH ; and save number in odd array]
DI ; Increment odd_pointer
SKIP
BX,ARR_EVEN ; [Initialise pointer
AH, [BX+S1] ; to even array and save number
AH,ARR EVEN H in even array |
SI ; Increment even_pointer
BP ; Increment array base_pointer
CL ; Decrement counter

Microprocessor 3-73 Instruction Set of 8086/8088 and ALP

JNZ BACK ;7 If not 0 go to back
END START

It is important to note that programs discussed so far do not accept any input from
keyboard and do not display any result on the video screen. This is done purposely to
maintain simplicity. To accept input in various formats from keyboard and to display data
on the video screen we have to use routines provided by Disk Operating System (DOS).
These routines are discussed in Chapter 4. The programs given in the subsequent sections
use routines provided by DOS. Therefore, students are suggested to refer these routines
before further reading the remaining part of this text.

3.16 Timings and Delays

In the real time applications, such as traffic light control, digital clock, process control,
serial communication, it is important to keep a track with time. For example in traffic light
control application, it is necessary to give time delays between two transitions. These time
delays are in few seconds and can be generated with the help of executing group of
instructions number of times. This software timers are also called time delays or software
delays. Let us see how to implement these time delays or software delays.

As you know microprocessor system consists of two basic compoenents, hardware and
software. The software component controls and operates the hardware to get the desired
output with the help of instructions. To execute these instructions, microprocessor takes fix
time as per the instruction, since it is driven by constant frequency clock. This makes it
possible to introduce delay for specific time between two events. In the following section
we will see different delay implementation techniques.

3.16.1 Timer Delay using NOP Instruction

NOP instruction does nothing but takes 3 clock cycles of processor time to execute. So
by executing NOP instruction in between two instructions we can get delay of 3 clock
cycles.

3.16.2 Timer Delay using Counters

Counting can create time delays. Since the execution times of the instructions used in a
counting routine are known, the initial value of the counter, required to get specific time

delay can be determined.
Clock cycles required

MOV C¥, COUNT ; Load count 4
BACK : DEC CX ; Decrement count 2
JNZ BACK ; If count # 0, repeat 16/4

In this program, the instructions DEC CX and JNZ BACK execute number of times
equal to count stored in the CX register. The time taken by this program for execution can
be calculated with the help of clock cycles. The column to the right of the comments
indicates the number of clock cycles required for the execution of each instruction. Two
values are specified for the number of clock cycles for the INZ instruction. The smaller

Microprocessor 3-74 Instruction Set of 8086/8088 and ALP

value is applied when the condition is not met, and the larger value is applied when it is
met. The first instruction MOV CX, count is executed only once and it requires 4 clock
cycles. There are count-1 passes through the loop where the condition is met and control
is transferred back to the first instruction in the loop (DEC CX). The number of clock
cycles that elapse while CX register is not zero are (count-1) x (2 + 16). On the last pass
through the loop the condition is not met and the loop is terminated. The number of clock
cycles that elapse in this pass are 2 + 4.

-. Total clock cycles required to execute the given program

= 4 +(Count-1)x(2+16)+ {2+4)
—
MOV CX, Count Lot)p

———
Last loop

For count = 100, the number of clock cycles required are

4+ (100-1)x@2x16) + (2 +4)

1792

1

Assuming operating frequency of 8086 system 10 MHz,

Time required for 1 clock-cycle = = 0.1 pusec

1
10MHz

~. Total time required for execution of a given program with count equal to 100 is
179.2 pusec (1792 x 0.1).

In the above example, we have calculated the time required for the execution of
program or delay introduced by the program when count value is given. However, in
most of the situations we know the waiting time or delay time and it is necessary to
determine what count should be loaded in the CX register to get the specified delay. Let
us consider that we have to generate a delay of 50 ms using an 8086 system that runs at
10 MHz frequency. Then using same program we can calculate the count value as follows :

Step 1 : Calculate the number of required clock cycles
Required delay time
Time for 1- clock cycle

Number of required clock cycles

Step 2 : Find the required count

Number of required clock cycles -4 —(2+4) .1
Execution Time for one loop

Count

500000-4-6

= —ae+y !

u

27778 = 6C82H

Microprocessor 3-75 Instruction Set of 8086/8088 and ALP

3.16.3 Timer Delay using Nested Loops

In this program one more external loop is added to execute the internal loop multiple
times. So that we can get larger delays. The inner loop is nothing but the program we
have seen in the last section.

MOV BX, Multiplier count Load multiplier count

14
REPE : MOV CX, COUNT ; Load count
BACK : DEC CX ; Decrement count
JNZ BACK ; If count # 0, repeat
DEC BX ; Decrement multiplier count

JNZ REPE ; If not zero repeat
In the delay calculations of nested loops, the delay introduced by inner loop is very
large in comparison with the delay provided by MOV BX, COUNT, DEC BX and JNZ
instructions. Therefore, it is not necessary to consider the last loop for the external loop
delay calculations separately. The inner loop delay calculations will remain as it is.

= Total clock cycles required to execute the given program

= | 4 +(count -1)x(2+16) + (2+4)] x multiplier count
MOV CX, Count Loop Last loop

For count = 100 and multiplier count 50, the number of clock

cycles required are

[4+(100-1)x(2+16) + (2 + 4)] x50
89600

i

Assuming operating frequency of 8086 system 10 MHz,

Total time required for execution of a given program

= 89600 x 0.1 usec = 8.96 ms

iy Example 3.2 : Write an 8086 ALP to generate a delay of 100 ms, if 8086 system
frequency is 10 MHz.

Solution :
Program :
MOV CX, COUNT ;4
BACK : DEC CX ;2
JNZ BACK ; 16/4

Step 1 : Calculate the number of required clock cycles

Required delay time

Number of required clock cycles = Time for T clock cycle

100 ms

01ps = 1000000

Microprocessor 3-76 Instruction Set of 8086/8088 and ALP

Step 2 : Find the required count

Number of required clock cycles -4 —(2+4) ‘1

Count P—
Execution time for one loop

It

100000046
(16+2)

55556 = D904H

mmp Example 3.3 : Write an 8086 ALP to generate a delay of 1 minute if 8086 system
frequency is 10 MHz.

Solution :

Program :

MOV BX, multiplier count

REPE : MOV CX, Count ; 4

BACK DEC CX ;2
JNZ BACK ; 16/4
DEC BX
JNZ REPE

Step 1 : Calculate the delay generated by inner loop with maximum count (FFFFH)

Delay generated by inner loop for count (FFFFH = 65535)
[4 + (65535 - 1) x (2 + 16) + (2 + 4)] x 0.1 us
118.1422 msec

Step 2 : Calculate the multiplier count to get delay of 1 minute

Required delay
Delay provided by inner loop

multiplier count

1x 60 sec
118.1422 m sec

i

509 = 1FDH

3.17 Data Conversions

Before going to write and execute any assembly language program on a computer we
must understand which type of data processor understands and which type of data user
understands, and how they communicate with each other. User communicates with
computer using input devices and computer gives outcome of process or result on the
display devices or hardcopy devices such as printer or plotter. Most commonly used input
device is keyboard and most commonly used output device is a display device, video
monitor. These devices understand the information in ASCII format. Keyboard gives the
pressed key number or character in its ASCII equivalent and for display certain number or
character we have to send the ASCII equivalent of the number or character to the display

Microprocessor 3-77 Instruction Set of 8086/8088 and ALP

device. On the other hand, processor does not understand the ASCII format. It uses binary
numbers. Therefore, it is necessary to convert input from keyboard to its binary equivalent
(ASCII to binary conversion) and convert processed data by processor into ASCII format
for the display (binary to ASCII conversion). Let us see how we can perform these
conversions. In this section we study the routines for these conversions. Once we
understand these routines we can use these routines to accept input using keyboard and to
display data on video monitor.

3.17.1 Routines to Convert Binary to ASCII

There are two ways to convert binary number into its ASCII equivalent :
* By the AAM instruction if the number is less than 100.

* By a series of decimal divisions (divide by 10).

3.17.1.1 By AAM Instruction (For Number Less than 100)

The AAM instruction converts the value in AX into a two-digit unpacked BCD number
in AX. For example, if number in AX is 0059H (89 decimal) before execution of AAM
instruction, AX contains 0809H after execution of AAM instruction. Now we can get ASCII
equivalent by adding 3030H to AX.

Algorithm :

AX | 00| 59 |[— AAM ——=] 08 | 09

AH AL AH AL

Note : 59H — 89 Decimal

AX | 08 | 09 |—=ADD AX, 3030H —] 38 | 39

AH AL

Note : 38H and 39H are the ASCII equivalents of 8 and 9 respectively

1. Save contents of all registers which are used in the routine.
2. Get the data in AL register and make AH equal to 00.

3. Use AAM instruction to convert number in its decimal equivalent in the unpacked
format.

4. Add 30H in each digit to get its ASCII equivalent.
5. Display digit one by one using function 2 of INT 21H.
6. Restore contents of registers.

Microprocessor 3-78 Instruction Set of 8086/8088 and ALP

Flowchart

[Save registers J

Get the hex number

!

Convert it into its
decimal (BCD) equivalent

!

Unpack the BCD digits

!

Add 30H in each BCD
digit to get its ASCII equivalent

!

Display each digit

{

Restore registers

Routine : Convert Binary to ASCII for number less than 100

Passing Parameter : Hex number in AL register.
; Routine to convert binary number into its
; decimal and then ASCII equivalent, and then display the number

BTA PROC NEAR

PUSH DX ; Save registers

PUSH BX

PUSH AX

MOV AH, OOH ; Clear AH

AAM ; Convert to BCD

ADD AX, 3030H ; Convert to ASCII

MOV BX, AX ; Save result

MOV DL, BH ; Load first digit (MSD)
MOV AH, 02 ; Load function number

INT 21H ; Display first digit (MSD)

MOV DL, BL ; Load second digit (LSD)

Microprocessor 3-79 Instruction Set of 8086/8088 and ALP

INT 21H ; Display second digit (LSD)

POP AX ; Restore registers
POP BX

POP DX

RET

ENDP

Sample Program

/ Sample program to convert binary number into its
; decimal and then ASCII equivalent, and then display the number

.MODEL SMALL ; Select SMALL mode
.STACK 100 ; Initialization of stack
.CODE

MOV AL, 59H ; Load number in AL

CALL BTA ; Call routine

MOV AH, 4CH ; [Exit

INT 21H ; to DOS]

C:\tasm\tasm s_bta.asm

Turbo Assembler Version 3.0 Copyright (c) 1988, 1991 Borland
International

Assembling file: s_bta.asm

Error messages: None

Microprocessor 3-80 Instruction Set of 8086/8088 and ALP

Warning messages: None
Passes: 1
Remaining memory: 410k

C:\tasm\tlink s _bta.obj

Turbo Link Version 5.0 Copyright (c) 1992 Borland International
C:\tasm\s_bta

89

3.17.1.2 By Series of Decimal Division

If number is greater than 99 we cannot use AAM instruction to convert given number
in the BCD format. In such case we use scheme of dividing by 10 to convert any whole
number from binary to an ASCII coded character string that can be displayed on the video
monitor.

Assume : Hex number is 7BH

12 (o]
10) 123 A) 7BH ‘ o1
- 120 - 78H =1 02
3 03 ~| 03 |
1 1
10) 12 - A)—c““><
- 10 - A
> 5 01 + 30H —= 31H
0 0 ‘/ 02 + 30H — 32H
10) 1 A) 1 03 + 30H —= 33H
-0 -0
- -v

1

Let us see the algorithm for converting number from binary to ASCII code.
Algorithm

1. Save contents of all registers which are used in the routine.

2. Divide the number by 10 and save the remainder on the stack as a significant BCD
digit.

3. Save the quotient as a number.

4. Repeat step 1 and 2 until quotient is 0.

5. Retrieve each remainder from stack and add 30 H to convert to ASCII before
displaying or printing.

6. Restore contents of registers.

Microprocessor 3-81

Save registers

t

Get the hex number

Instruction Set of 8086/8088 and ALP

Flowchart

Divide the number by 10
and save remainder on the stack

!

Save the quotient as a number

(] Yes

Get the remainder

1

Convert to ASCII and display

Refrive register contents

Passing parameter : 4-digit hex number in AX register.
; Routine to convert 4-digit hex into its decimal
; and then to ASCII equivalent, and display it

Routine : Convert Binary to ASCIi

BTA4D PROC NEAR

PUSH DX ; Save registers
PUSH CX

Microprocessor 3-82 Instruction Set of 8086/8088 and ALP

PUSH BX

PUSH AX

MOV CX, O ; Clear digit counter

MOV BX, 10 ; Load 10 decimal in BX
BACK: MOV DX, 0 ; Clear DX

DIV BX ; Divide DX : AX by 10

PUSH DX ; Save remainder

INC CX ; Counter remainder

OR AX, AX ; Test if quotient equal to zero

JNZ BACK ; If not zero divide again

MOV AH, O02H ; Load function number
DISP: POP DX ; Get remainder

ADD DL, 30H ; Convert to ASCII

INT 21H ; Display digit

LOOP DISP

POP AX ; Restore registers

POP BX

POP CX

POP DX

RET

ENDP

END

Sample Program

; Sample program to convert 4-digit hex into its
; and then to ASCII equivalent, and display it

decimal

.MODEL SMALL
.STACK 100
.CODE

Select SMALL model
Initialise stack segment

e “

MOV AX, 2ABCH
CALL BTA4D
MOV AH, 4CH
INT 21H

Call routine
[Exit

I%e Ne W

